969 research outputs found

    Probing Gravity with Spacetime Sirens

    Full text link
    A gravitational observatory such as LISA will detect coalescing pairs of massive black holes, accurately measure their luminosity distance and help identify a host galaxy or an electromagnetic counterpart. If dark energy is a manifestation of modified gravity on large scales, gravitational waves from cosmologically-distant spacetime sirens are direct probes of this new physics. For example, a gravitational Hubble diagram based on black hole pair luminosity distances and host galaxy redshifts could reveal a large distance extra-dimensional leakage of gravity. Various additional signatures may be expected in a gravitational signal propagated over cosmological scales.Comment: 11 pages, 1 figure, accepted for publication in ApJ Letter

    Cosmological perturbations of brane-induced gravity and the vDVZ discontinuity on FLRW space-times

    Full text link
    We investigate the cosmological perturbations of the brane-induced (Dvali-Gabadadze-Porrati) model which exhibits a van Dam-Veltman-Zakharov (vDVZ) discontinuity when linearized over a Minkowski background. We show that the linear brane scalar cosmological perturbations over an arbitrary Friedmann-Lemaitre-Robertson-Walker (FLRW) space-time have a well defined limit when the radius of transition between 4D and 5D gravity is sent to infinity with respect to the background Hubble radius. This radius of transition plays for the brane-induced gravity model a role equivalent to the Compton wavelength of the graviton in a Pauli-Fierz theory, as far as the vDVZ discontinuity is concerned. This well defined limit is shown to obey the linearized 4D Einstein's equations whenever the Hubble factor is non vanishing. This shows the disappearance of the vDVZ discontinuity for general FLRW background, and extends the previously know result for maximally-symmetric space-times of non vanishing curvature. Our reasoning is valid for matter with simple equation of state such as a scalar field, or a perfect fluid with adiabatic perturbations, and involves to distinguish between space-times with a vanishing scalar curvature and space-times with a non vanishing one. We also discuss the validity of the linear perturbation theory, in particular for those FLRW space-times where the Ricci scalar is vanishing only on a set of zero measure. In those cases, we argue that the linear perturbation theory breaks down when the Ricci scalar vanishes (and the radius of transition is sent to infinity), in a way similar to what has been found to occur around sources on a Minkowski background.Comment: 36 pages, v.2, typos correcte

    Reconstructing the Distortion Function for Nonlocal Cosmology

    Full text link
    We consider the cosmology of modified gravity models in which Newton's constant is distorted by a function of the inverse d'Alembertian acting on the Ricci scalar. We derive a technique for choosing the distortion function so as to fit an arbitrary expansion history. This technique is applied numerically to the case of LambdaCDM cosmology, and the result agrees well with a simple hyperbolic tangent.Comment: 17 pages, 1 figure, dedicated to Stanley Deser on the occasion of his 78th birthday, revised version for publication in JCA

    A formal introduction to Horndeski and Galileon theories and their generalizations

    Full text link
    We review different constructions of Galileon theories in both flat and curved space, and for both single scalar field models as well as multi-field models. Our main emphasis is on the formal mathematical properties of these theories and their construction.Comment: 19 page

    Cosmology on a Brane in Minkowski Bulk

    Full text link
    We discuss the cosmology of a 3-brane embedded in a 5D bulk space-time with a cosmological constant when an intrinsic curvature Ricci scalar is included in the brane action. After deriving the `brane-Friedmann' equations for a Z_2 symmetrical metric, we focus on the case of a Minkowski bulk. We show that there exist two classes of solutions, close to the usual Friedmann-Lemaitre-Robertson-Walker cosmology for small enough Hubble radii. When the Hubble radius gets larger one either has a transition to a fully 5D regime or to a self-inflationary solution which produces a late accelerated expansion. We also compare our results with a perturbative approach and eventually discuss the embedding of the brane into the Minkowski space-time. This latter part of our discussion also applies when no intrinsic curvature term is included.Comment: 16 pages, minor changes and comments adde

    Can Hamiltonians be boundary observables in Parametrized Field Theories?

    Full text link
    It has been argued that holography in gravitational theories is related to the existence of a particularly useful Gauss Law that allows energy to be measured at the boundary. The present work investigates the extent to which such Gauss Laws follow from diffeomorphism invariance. We study parametrized field theories, which are a class of diffeomorphism-invariant theories without gravity. We find that the Hamiltonian for parametrized field theories vanishes on shell even in the presence of a boundary and under a variety of boundary conditions. We conclude that parametrized theories have no useful Gauss Law, consistent with the absence of holography in these theories.Comment: 28 pages, LaTeX, references added, citations clarified, typos correcte

    Generalized Galileons: All scalar models whose curved background extensions maintain second-order field equations and stress tensors

    Get PDF
    We extend to curved backgrounds all flat-space scalar field models that obey purely second-order equations, while maintaining their second-order dependence on both field and metric. This extension simultaneously restores to second order the, originally higher derivative, stress tensors as well. The process is transparent and uniform for all dimensions

    Improving relativistic MOND with Galileon k-mouflage

    Full text link
    We propose a simple field theory reproducing the MOND phenomenology at galaxy scale, while predicting negligible deviations from general relativity at small scales thanks to an extended Vainshtein ("k-mouflage") mechanism induced by a covariant Galileon-type Lagrangian. The model passes solar-system tests at the post-Newtonian order, including those of local Lorentz invariance, and its anomalous forces in binary-pulsar systems are orders of magnitude smaller than the tightest experimental constraints. The large-distance behavior is obtained as in Bekenstein's tensor-vector-scalar (TeVeS) model, but with several simplifications. In particular, no fine-tuned function is needed to interpolate between the MOND and Newtonian regimes, and no dynamics needs to be defined for the vector field because preferred-frame effects are negligible at small distances. The field equations depend on second (and lower) derivatives, and avoid thus the generic instabilities related to higher derivatives. Their perturbative solution around a Schwarzschild background is remarkably simple to derive. We also underline why the proposed model is particularly efficient within the class of covariant Galileons.Comment: 6 pages, 1 figure, RevTeX4 forma

    The Boulware-Deser mode in Zwei-Dreibein gravity

    Full text link
    Massive gravity in three dimensions accepts several different formulations. Recently, the 3-dimensional bigravity dRGT model in first order form, Zwei-Dreibein gravity, was considered by Bergshoeff {\it et al.} and it was argued that the Boulware-Deser mode is killed by extra constraints. We revisit this assertion and conclude that there are sectors on the space of initial conditions, or subsets of the most general such model, where this mode is absent. But, generically, the theory does carry 3 degrees of freedom and thus the Boulware-Deser mode is still active. Our results also sheds light on the equivalence between metric and vierbein formulations of dRGT model.Comment: 4 page
    corecore