73 research outputs found

    Antarctic network of lamp-calibrated multichannel radiometers for continuous ozone and uv radiation data

    Get PDF
    International audienceThree NILU-UV multichannel radiometers have been installed in 1999 at the Argentinian sites of Ushuaia (54S), Marambio (64S) and Belgrano-II (77S) in order to continuously monitor UV radiation, photosynthetically active radiation and total ozone. The measurements were established by INM, Spain in collaboration with FMI, Finland, DNA-IAA, Argentina and CADIC, Argentina to observe and characterize the spatial and temporal evolution of ozone and ultraviolet radiation in the Antarctic region. Special attention has been given to the quality control and quality assurance of the measurements under harsh climatological conditions. The ozone and UV time series of 2000?2006 were calibrated using a polynomial fit for lamp measurements performed every second week all year round. The gaps in these data are minimal, with almost no data missing, and the data products are available from http://www.polarvortex.org in near real time. The data products include the erythemally-weighted UV, UVB and UVA radiation, photosynthetically active radiation (PAR), total ozone (O3) and a cloud parameter (CLT). For UV data, dose rates as well as daily doses are available; from these the maximum measured UV indices (UVI), during 2000?2006, were 12.0, 9.7 and 8.1 at Ushuaia, Marambio and Belgrano-II, respectively

    Effect on Irradiance of the eruption of the Cordon Caulle (Chile) at different altitudes in the Nahuel Huapi National Park (Patagonia, Argentina)

    Get PDF
    Volcanic eruptions inject ash and non-ash particles into the atmosphere, modifying regional Aerosols Optical Depth (AOD) and aerosols size distribution, which affect irradiance at the earth’s surface. In this paper, we analyze the effect of the eruption of Puyehue-Cordon Caulle (Chile) on irradiance in the area of the Nahuel Huapi National Park (NHNP) (~100 km southeast of Puyehue-Cordon Caulle), at different altitudes. In this paper we only included the results for direct and AOD obtained during field campaigns at two consecutive years, before and after the eruption. Three days presented clear skies during most of the day in 2011. Two of those days, showed AOD similar to the values in 2010. On the third days, at the lowest altitude site (804m.s.l.), AOD were near 200% larger than in 2010. The largest decreases observed, at noon, in the direct irradiance was ~30% at 380 nm and 25% at 500nm, increasing with Solar Zenith Angle (SZA). The effect was less pronounced at the site at highest altitude (1930 m.s.l.), where the AODs increase was near 90% and the direct noon irradiance decrease 10% at 380 nm and 7% at 500nm. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.Fil: Diaz, Susana Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Paladini, Alejandro Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Braile, H. G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Ingeniería Genética y Biología Molecular "Dr. Héctor N. Torres"; ArgentinaFil: Dieguez, Maria del Carmen. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Deferrari, Guillermo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Vernet, María. University of California at San Diego; Estados UnidosFil: Vrsalovic, Jazmin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; Argentin

    Quality assurance of the solar UV network in the Antarctic

    Get PDF
    Measuring ultraviolet radiation in the Antarctic region, where weather conditions are extremely challenging, is a demanding task. Proper quality control of the measurements and quality assurance of the data, which are the basis of all scientific use of data, has to be especially well planned and executed. In this paper we show the importance of proper quality assurance and describe the methods used to successfully operate the NILU-UV multichannel radiometers of the Antarctic network stations at Ushuaia, 54S, and Marambio, 64S. According to our experience, even though multichannel instruments are supposed to be rather stable as a function of time, severe drifts can occur in the sensitivity of the channels under these harsh conditions. During 2000–2003 the biggest drifts were 35%, both at Ushuaia and Marambio, with the sensitivity of the channels dropping at different rates. Without proper corrections in the data, this would have seriously affected the calculated UV dose rates. As part of the quality assurance of the network a traveling reference NILU-UV, which was found to be stable, was used to transfer the desired irradiance scale to the site NILU-UV data. Relative lamp tests were used to monitor the stability of the instruments. Each site NILU-UV was scaled channel by channel to the traveling reference by performing solar comparisons. The method of scaling each channel separately was found to be successful, even though the differences between the raw data of the site NILU-UV and the reference instruments were, before the data correction, as much as 40%. After the correction, the mean ratios of erythemally weighted UV dose rates measured during the solar comparisons in 2000–2003 between the reference NILU-UV and the site NILU-UV were 1.007 ± 0.011 and 1.012 ± 0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80. These results make possible the scientific use of NILU-UV data measured simultaneously at quite different locations, e.g., the Antarctic and Arctic, and the method presented is also practicable for other multichannel radiometer networks.S, and Marambio, 64S. According to our experience, even though multichannel instruments are supposed to be rather stable as a function of time, severe drifts can occur in the sensitivity of the channels under these harsh conditions. During 2000–2003 the biggest drifts were 35%, both at Ushuaia and Marambio, with the sensitivity of the channels dropping at different rates. Without proper corrections in the data, this would have seriously affected the calculated UV dose rates. As part of the quality assurance of the network a traveling reference NILU-UV, which was found to be stable, was used to transfer the desired irradiance scale to the site NILU-UV data. Relative lamp tests were used to monitor the stability of the instruments. Each site NILU-UV was scaled channel by channel to the traveling reference by performing solar comparisons. The method of scaling each channel separately was found to be successful, even though the differences between the raw data of the site NILU-UV and the reference instruments were, before the data correction, as much as 40%. After the correction, the mean ratios of erythemally weighted UV dose rates measured during the solar comparisons in 2000–2003 between the reference NILU-UV and the site NILU-UV were 1.007 ± 0.011 and 1.012 ± 0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80. These results make possible the scientific use of NILU-UV data measured simultaneously at quite different locations, e.g., the Antarctic and Arctic, and the method presented is also practicable for other multichannel radiometer networks.S. According to our experience, even though multichannel instruments are supposed to be rather stable as a function of time, severe drifts can occur in the sensitivity of the channels under these harsh conditions. During 2000–2003 the biggest drifts were 35%, both at Ushuaia and Marambio, with the sensitivity of the channels dropping at different rates. Without proper corrections in the data, this would have seriously affected the calculated UV dose rates. As part of the quality assurance of the network a traveling reference NILU-UV, which was found to be stable, was used to transfer the desired irradiance scale to the site NILU-UV data. Relative lamp tests were used to monitor the stability of the instruments. Each site NILU-UV was scaled channel by channel to the traveling reference by performing solar comparisons. The method of scaling each channel separately was found to be successful, even though the differences between the raw data of the site NILU-UV and the reference instruments were, before the data correction, as much as 40%. After the correction, the mean ratios of erythemally weighted UV dose rates measured during the solar comparisons in 2000–2003 between the reference NILU-UV and the site NILU-UV were 1.007 ± 0.011 and 1.012 ± 0.012 for Ushuaia and Marambio, respectively, when the solar zenith angle varied up to 80. These results make possible the scientific use of NILU-UV data measured simultaneously at quite different locations, e.g., the Antarctic and Arctic, and the method presented is also practicable for other multichannel radiometer networks.. These results make possible the scientific use of NILU-UV data measured simultaneously at quite different locations, e.g., the Antarctic and Arctic, and the method presented is also practicable for other multichannel radiometer networks.Fil: Lakkala, K.. Finnish Meteorological Institute; FinlandiaFil: Redondas, A.. Instituto Nacional de Meteorología; EspañaFil: Meinander, O.. Finnish Meteorological Institute; FinlandiaFil: Torres ,Carlos. Instituto Nacional de Meteorología; EspañaFil: Koskela, T.. Finnish Meteorological Institute; FinlandiaFil: Cuevas, Eduardo. Instituto Nacional de Meteorología; EspañaFil: Taalas, P.. Finnish Meteorological Institute; FinlandiaFil: Dahlback, A.. University of Oslo; NoruegaFil: Deferrari, Guillermo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Austral de Investigaciones Científicas; ArgentinaFil: Edvardsen, K.. Instituto Noruego de Investigación del Aire; NoruegaFil: Ochoa, H.. Ministerio de Relaciones Exteriores, Comercio Interno y Culto. Dirección Nacional del Antártico. Instituto Antártico Argentino; Argentin

    Horizontal coherence of low-frequency fixed-path sound in a continental shelf region with internal-wave activity

    Get PDF
    Author Posting. © Acoustical Society of America, 2012. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 131 (2012): 1782-1797, doi:10.1121/1.3666003.Sound at 85 to 450 Hz propagating in approximately 80-m depth water from fixed sources to a joint horizontal/vertical line array (HLA/VLA) is analyzed. The data are from a continental shelf area east of Delaware Bay (USA) populated with tidally generated long- and short-wavelength internal waves. Sound paths are 19 km in the along-shore (along internal-wave crest) direction and 30 km in the cross-shore direction. Spatial statistics of HLA arrivals are computed as functions of beam steering angle and time. These include array gain, horizontally lagged spatial correlation function, and coherent beam power. These quantities vary widely in magnitude, and vary over a broad range of time scales. For example, correlation scale can change rapidly from forty to five wavelengths, and correlation-scale behavior is anisotropic. In addition, the vertical array can be used to predict correlation expected for adiabatic propagation with cylindrical symmetry, forming a benchmark. Observed variations are in concert with internal-wave activity. Temporal variations of three coherence measures, horizontal correlation length, array gain, and ratio of actual correlation length to predicted adiabatic-mode correlation length, are very strong, varying by almost a factor of ten as internal waves pass.This work was supported by Office of Naval Research (ONR) Grants Nos. N00014-05-1-0482 and N00014-11-1- 0194 to T.F.D., ONR Grant No. N00014-04-1-0146 to J.F.L., and an ONR Ocean Acoustics Postdoctoral Fellowship awarded to J.M.C. under Professor William Carey at Boston University

    UV measurements at Marambio and Ushuaia during 2000–2010

    Get PDF
    Solar ultraviolet (UV) irradiances were measured with NILU-UV multichannel radiometers at Ushuaia (54°&thinsp;S) and Marambio (64°&thinsp;S) between 2000 and 2013. The measurements were part of the Antarctic NILU-UV network, which was started in cooperation between Spain, Argentina and Finland. The erythemally weighted UV irradiance time series of both stations were analysed for the first time. The quality assurance procedures included a travelling reference instrument to transfer the irradiance scale to the stations. The time series were homogenized and high quality measurements were available for the period 2000–2010. During this period UV indices of 11 or more were measured on 5 and 35 days at Marambio and Ushuaia, respectively. At Marambio, the peak daily maximum UV index of 12 and daily doses of around 7&thinsp;kJ&thinsp;m−2 were measured in November 2007. The highest UV daily doses at both stations were typically around 6&thinsp;kJ&thinsp;m−2 and occurred when the stations were inside the polar vortex, resulting in very low total ozone amount. At both stations, daily doses in late November could even exceed those in the summer. At Marambio, in some years, also daily doses in October can be as high as those during the summer. At Ushuaia, the peak daily maximum UV index of 13 was measured twice: in November 2003 and 2009. Also during those days, the station of Ushuaia was inside the polar vortex.</p

    Mar project: a project for monitoring Antarctic and subantarctic ozone layer

    Get PDF
    Ponencia presentada en: 3ª Asamblea Hispano Portuguesa de Geodesia y Geofisica, celebrada en Valencia en 2002The co-ordinated Project presented attempts to increase the limited information existing nowadays about the space-time distribution of NO2, O3, OClO constituents and ultraviolet radiation over Antarctic and sub-Antarctica regions. In the framework of projects financed in previous convocations of the CICYT (PNIA) the installation of three spectrometers in the Argentinean bases of Belgrano, Marambio and Ushuaia was carried out (1994) and an ozosondeador in Belgrano (1999) for the INTA as well as the installation of three radiometers for the INM in the same stations (1999) thanks to the existent agreements of scientific collaboration between INTA and DNA/IAA and INM with DNA/IAA. Both networks of instruments, complementary and co-ordinated, will allow to reach the following objectives: To observe and to characterise the space and temporal evolution so much of the O3, NO2 and OClO like of the ultraviolet radiation in those regions during next years, to carry out a dynamic study of the Antarctic polar vortex in which is analysed as the daily evolution of this it affects at the O3, NO2, OClO and spectral UV radiation giving special attention to populated regions of the South Hemisphere (Ushuaia) and to carry out an exhaustive control of quality of the data obtained by the instruments that assure us to be able to use the measures obtained by the same ones to approach studies of tendencies in next years. Independently of the scientific interest of the previously mentioned objectives, under the atmospheric point of view, this project will provide an unique information to other Spanish groups in Antarctic biology research
    corecore