7 research outputs found

    Unusual cause of mechanical ileus: abdominal cocoon syndrome

    Get PDF
    A 38-year-old black male patient was admitted with diarrhea and nausea over two days and aggravating pain in the meso- and epigastium that resolved after urination. He had no surgical history and only an episode of pulmonary tuberculosis five years earlier, for which he was properly treated. Physical examination revealed a tender and distended abdomen with clangorous sounds. His temperature was 36.1°C. Routine laboratory blood analyses were normal. An abdominal ultrasound revealed diffuse distention of the small intestine. A computed tomography (CT) scan showed a conglomerate of dilated small bowel loops in the meso- and hypogastrium, suggestive for a supravesical mechanical small bowel obstruction. Peritoneal thickening was seen in the right epigastrium (Figure A, white arrow). An explorative laparoscopy revealed a whitish, thickened membrane encapsulating the small bowels as a ‘cocoon’ (Figure B). Extensive adhesiolysis released an intestinal kinking in the lower abdomen, just above the bladder. No resection was needed. Histopathology of the membrane showed fibrocollagenous tissue with mixed inflammatory infiltrate

    Multilevel Analysis of the Neovascularization and Integration Process of a Nonvascularized Rectus Fascia Transplantation

    No full text
    Background. Failure to close the abdominal wall after intestinal transplantation (ITx) or multivisceral Tx remains a surgical challenge. An attractive method is the use of nonvascularized rectus fascia (NVRF) in which both layers of the donor abdominal rectus fascia are used as an inlay patch without vascular anastomosis. How this graft integrates over time remains unknown. The study aims to provide a multilevel analysis of the neovascularization and integration process of the NVRF. Methods. Three NVRF-Tx were performed after ITx. Clinical, radiological, histological, and immunological data were analyzed to get insights into the neovascularization and integration process of the NVRF. Moreover, cryogenic contrast-enhanced microfocus computed tomography (microCT) analysis was used for detailed reconstruction of the vasculature in and around the NVRF (3-dimensional histology). Results. Two men (31- and 51-y-old) and 1 woman (49-y-old) underwent 2 multivisceral Tx and 1 combined liver-ITx, respectively. A CT scan showed contrast enhancement around the fascia graft at 5 days post-Tx. At 6 weeks, newly formed blood vessels were visualized around the graft with Doppler ultrasound. Biopsies at 2 weeks post-Tx revealed inflammation around the NVRF and early fibrosis. At 6 months, classical 2-dimensional histological analysis of a biopsy confirmed integration of the fascia graft with strong fibrotic reaction without signs of rejection. A cryogenic contrast-enhanced microCT scan of the same biopsy revealed the presence of microvasculature, enveloping and penetrating the donor fascia. Conclusions. We showed clinical, histological, and microCT evidence of the neovascularization and integration process of the NVRF after Tx
    corecore