20 research outputs found

    Epitaxial Bi 9 Ti 3 Fe 5 O 27 thin films: a new type of layer-structure room-temperature multiferroic

    Get PDF
    In this communication, we report the successful growth of high-quality Aurivillius oxide thin films with m = 8 (where m denotes the number of pseudo-perovskite blocks) using pulsed laser deposition. Both the ferroelectric and magnetic properties of the layer-structure epitaxial Bi9Ti3Fe5O27 films were investigated. Surprisingly, the optimized thin films exhibit in-plane ferroelectric polarization switching and ferromagnetism even at room temperature, though the bulk material is antiferromagnetic. In addition, dielectric measurements indicate that such thin films exhibit potential for high-frequency device applications. This work therefore demonstrates a new pathway to developing single-phase multiferroic materials where ferroelectricity and ferromagnetism coexist with great potential for low energy device applications

    Couplings of Polarization with Interfacial Deep Trap and Schottky Interface Controlled Ferroelectric Memristive Switching

    No full text
    Memristors with excellent scalability have the potential to revolutionize not only the field of information storage but also neuromorphic computing. Conventional metal oxides are widely used as resistive switching materials in memristors. Interface-type memristors based on ferroelectric materials are emerging as alternatives in the development of high-performance memory devices. A clear understanding of the switching mechanisms in this type of memristors, however, is still in its early stages. By comparing the bipolar switching in different systems, it is found that the switchable diode effect in ferroelectric memristors is controlled by polarization modulated Schottky barrier height and polarization coupled interfacial deep states trapping/detrapping. Using semiconductor theories with consideration of polarization effects, a phenomenological theory is developed to explain the current–voltage behavior at the metal/ferroelectric interface. These findings reveal the critical role of the interaction among polarization charges, interfacial defects, and Schottky interface in controlling ferroelectric resistive switching and offer the guidance to design ferroelectric memristors with enhanced performance
    corecore