4 research outputs found

    A first assessment of the interdependency of mesh motion and free surface models in openfoam regarding wave-structure interaction

    Get PDF
    Mesh motion is of key importance in assuring adequate CFD modelling of wave- structure interaction problems, such as wave impact on floating offshore wind turbines and seakeeping of ships. Wave forcing often leads to large displacements of floating structures. As a consequence, the fluid domain boundaries need to move in order to accommodate for these wave-induced displacements. The mesh quality needs to be preserved at all times to guarantee accurate and stable results for the rigid body displacements as well as for the fluid variables. Mesh deformation techniques, in particular algebraic mesh motion methods, have been widely used within the OpenFOAM framework during the last decade. Unfortunately, stability is easily jeopardized in case of large displacements. Large mesh deformation gives rise to computation- ally demanding and unstable results. Sliding meshes have been used to address this issue, but they are cumbersome for multi-degree of freedom motion. Therefore, overset methods have been implemented in recent versions of OpenFOAM. Especially, the newly implemented overset meth- ods in the OpenFOAM branch foam-extend, have shown to give good results for an acceptable runtime. Simultaneously, considerable progress has been made on the development of alternatives for alge- braic volume-of-fluid methods for free surface modelling, which notoriously suffer from smearing effects. Although it seems reasonable to expect that the choice in free surface model combined with a certain mesh motion technique will have an influence on the overal result, the interde- pendency between mesh motion techniques and free surface modelling has not been studied yet. This paper aims at taking the first steps towards a better understanding of this mesh motion-free surface interdependency and, as such, facilitate an informed choice

    Physical Model Tests on Spar Buoy for Offshore Floating Wind Energy Conversion

    Get PDF
    ABSTRACT: The present paper describes the experiences gained from the design methodology and operation of a 3D physical modelexperiment aimed to investigate the dynamic behaviour of a spar buoy floating offshore wind turbine. The physical model consists in a Froude-scaled NREL 5MW reference wind turbine (RWT) supported on the OC3-Hywind floating platform. Experimental tests have been performed at Danish Hydraulic Institute (DHI) offshore wave basin within the European Union-Hydralab+ Initiative, in April 2019. The floating wind turbine model has been subjected to a combination of regular and irregular wave attacks and different wind loads. Measurements of displacements, rotations, accelerations, forces response of the floating model and at the mooring lines have been carried out. First, free decay tests have been analysed to obtain the natural frequency and the modal damping ratios of each degree of freedom governing the offshore. Then, the results concerning regular waves, with orthogonal incidence to the structure, are presented. The results show that most of longitudinal dynamic response occurs at the wave frequency and most of lateral dynamic response occurs at rigid-body frequencies.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654110, HYDRALAB+

    SparBOFWEC Spar Buoy for Offshore Floating Wind Energy Conversion - Data Storage Report

    No full text
    The present work describes the experiences gained from the design methodology and operation of a 3D physical model experiment aimed to investigate the dynamic behaviour of a spar buoy (SB) off-shore floating wind turbine (WT) under different wind and wave conditions. The physical model tests have been performed at Danish Hydraulic Institute (DHI) off-shore wave basin within the European Union-Hydralab+ Initiative, in April 2019. The floating WT model has been subjected to a combination of regular and irregular wave attacks and wind loads
    corecore