117 research outputs found
Wash water recovery system
The Wash Water Recovery System (WWRS) is intended for use in processing shower bath water onboard a spacecraft. The WWRS utilizes flash evaporation, vapor compression, and pyrolytic reaction to process the wash water to allow recovery of potable water. Wash water flashing and foaming characteristics, are evaluated physical properties, of concentrated wash water are determined, and a long term feasibility study on the system is performed. In addition, a computer analysis of the system and a detail design of a 10 lb/hr vortex-type water vapor compressor were completed. The computer analysis also sized remaining system components on the basis of the new vortex compressor design
GTP avoidance in Tetrahymena thermophila requires tyrosine kinase activity, intracellular calcium, NOS, and guanylyl cyclase
Guanosine 5'-triphosphate (GTP) is a chemorepellent in Tetrahymena thermophila that has been shown to stimulate cell division as well as ciliary reversal. Previous studies have proposed that GTP avoidance is linked to a receptor-mediated, calcium-based depolarization. However, the intracellular mechanisms involved in GTP avoidance have not been previously documented. In this study, we examine the hypothesis that GTP signals through a tyrosine kinase pathway in T. thermophila. Using behavioral assays, enzyme immunosorbent assays, Western blotting, and immunofluorescence, we present data that implicate a tyrosine kinase, phospholipase C, intracellular calcium, nitric oxide synthase (NOS) and guanylyl cyclase in GTP signaling. The tyrosine kinase inhibitor genistein eliminates GTP avoidance in Tetrahymena in behavioral assays. Similarly, pharmacological inhibitors of phospholipase C, NOS, and guanylyl cyclase all eliminated Tetrahymena avoidance to GTP. Immunofluorescence data shows evidence of tyrosine kinase activity in the cilia, suggesting that this enzyme activity could be directly involved in ciliary reversal
Nanomechanical control of an optical antenna
Resonant optical nanoantennas hold great promise for applications in physics and chemistry1–6. Their operation relies on their ability to concentrate light on spatial scales much smaller than the wavelength. In this work, we mechanically tune the length and gap between two triangles comprising a single gold bow-tie antenna by precise nanomanipulation with the tip of an atomic force microscope. At the same time, the optical response of the nanostructure is determined by means of dark-field scattering spectroscopy. We find no unique single ‘antenna resonance’. Instead, the plasmon mode splits into two dipole resonances for gap sizes on the order of a few tens of nanometres, governed by the full three-dimensional shape of the antenna arms. This result opens the door to new nano-optomechanical devices, where mechanical changes on the nanometre scale control the optical properties of artificial structures
Strategies for Controlled Placement of Nanoscale Building Blocks
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others
High-temperature industrial heat pump. Management plan
The management plan for the development and demonstration of a high-temperature industrial heat pump for milk drying is presented. Section 2 describes the overall objective, technical approach, and program scope for development and demonstration of a heat pump system for use in an existing milk drying operation. The high temperature industrial heat pump program organization, its relationships to higher-level AiResearch organizations, subcontractor relationships, and personnel responsibilities are discussed in Section 3. The program management and control functions and data management techniques are described in Section 4. The activity for each work breakdown structure is described in Section 5. The program schedule is schematically shown in Section 6 and cost management reports are described in Section 7
- …