78 research outputs found

    Chloridotris(3,5-dimethyl-1H-pyrazole-ÎșN 2)(formato-ÎșO)copper(II)–dichlorido­bis(3,5-dimethyl-1H-pyrazole-ÎșN 2)copper(II) (2/1)

    Get PDF
    The asymmetric unit of the title compound, [Cu(CHO2)Cl(C5H8N2)3]2·[CuCl2(C5H8N2)2] or 2[A]·[B], contains one A mol­ecule and one half-molecule of B, located on a centre of inversion. The CuII environments in A and B are different. In A, the CuII atom is coordinated by three N atoms from three 3,5-dimethyl-1H-pyrazole (L) ligands, one O atom from a formate ligand and a chloride anion in an axial position [Cu—Cl = 2.4275 (7) Å] in a distorted tetra­gonal–pyramidal geometry. The CuII atom in B is coordinated by two N atoms from two L ligands and two chloride anions [Cu—Cl = 2.2524 (6) Å] in a distorted square-planar geometry. In the crystal, inter­molecular N—H⋯O hydrogen bonds link mol­ecules A into centrosymmetric dimers. Inter­molecular N—H⋯Cl hydrogen bonds further link these dimers with the B mol­ecules, forming chains propagating in [101]

    Bis(acetato-Îș2 O,Oâ€Č)bis­(3,5-dimethyl-1H-pyrazole-ÎșN 2)copper(II)

    Get PDF
    In the title compound, [Cu(C2H3O2)2(C5H8N2)2], the CuII atom has a distorted tetra­gonal–bipyramidal geometry, with the equatorial plane formed by two N atoms belonging to two 3,5-dimethyl-1H-pyrazole ligands and two O atoms from two acetate anions. The second O atoms of the acetate groups provide elongated Cu—O axial contacts, so that the acetates appear to be coordinated in a pseudo-chelate fashion. The pyrazole ligands are situated in cis positions with respect to each other. In the crystal structure, mol­ecules are linked through inter­molecular N—H⋯O hydrogen bonds, forming a one-dimensional chain

    A Model Analysis of Arterial Oxygen Desaturation during Apnea in Preterm Infants

    Get PDF
    Rapid arterial O2 desaturation during apnea in the preterm infant has obvious clinical implications but to date no adequate explanation for why it exists. Understanding the factors influencing the rate of arterial O2 desaturation during apnea () is complicated by the non-linear O2 dissociation curve, falling pulmonary O2 uptake, and by the fact that O2 desaturation is biphasic, exhibiting a rapid phase (stage 1) followed by a slower phase when severe desaturation develops (stage 2). Using a mathematical model incorporating pulmonary uptake dynamics, we found that elevated metabolic O2 consumption accelerates throughout the entire desaturation process. By contrast, the remaining factors have a restricted temporal influence: low pre-apneic alveolar causes an early onset of desaturation, but thereafter has little impact; reduced lung volume, hemoglobin content or cardiac output, accelerates during stage 1, and finally, total blood O2 capacity (blood volume and hemoglobin content) alone determines during stage 2. Preterm infants with elevated metabolic rate, respiratory depression, low lung volume, impaired cardiac reserve, anemia, or hypovolemia, are at risk for rapid and profound apneic hypoxemia. Our insights provide a basic physiological framework that may guide clinical interpretation and design of interventions for preventing sudden apneic hypoxemia

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Crystal structure of high-spin tetraaquabis(2-chloropyrazine-ÎșN4)iron(II) bis(4-methylbenzenesulfonate)

    No full text
    The title salt, [FeII(C4H3ClN2)2(H2O)4](C7H7O3S)2, contains a complex cation with point group symmetry 2/m. The high-spin FeII cation is hexacoordinated by four symmetry-related water and two N-bound 2-chloropyrazine molecules in a trans arrangement, forming a distorted FeN2O4 octahedron. The three-dimensional supramolecular structure is supported by intermolecular O—H...O hydrogen bonds between the complex cations and tosylate anions, and additional π–π interactions between benzene and pyrazine rings. The methyl H atoms of the tosylate anion are equally disordered over two positions
    • 

    corecore