63 research outputs found

    Integrating Multiple Lines of Evidence into Historical Biogeography Hypothesis Testing: A Bison bison Case Study

    Get PDF
    One of the grand goals of historical biogeography is to understand how and why species’ population sizes and distributions change over time. Multiple types of data drawn from disparate fields, combined into a single modelling framework, are necessary to document changes in a species’s demography and distribution, and to determine the drivers responsible for change. Yet truly integrated approaches are challenging and rarely performed. Here, we discuss a modelling framework that integrates spatio-temporal fossil data, ancient DNA, palaeoclimatological reconstructions, bioclimatic envelope modelling and coalescence models in order to statistically test alternative hypotheses of demographic and potential distributional changes for the iconic American bison (Bison bison). Using different assumptions about the evolution of the bioclimatic niche, we generate hypothetical distributional and demographic histories of the species. We then test these demographic models by comparing the genetic signature predicted by serial coalescence against sequence data derived from subfossils and modern populations. Our results supported demographic models that include both climate and human-associated drivers of population declines. This synthetic approach, integrating palaeoclimatology, bioclimatic envelopes, serial coalescence, spatio-temporal fossil data and heterochronous DNA sequences, improves understanding of species’ historical biogeography by allowing consideration of both abiotic and biotic interactions at the population level

    Resolving the Evolutionary History of Campanula (Campanulaceae) in Western North America

    Get PDF
    Recent phylogenetic works have begun to address long-standing questions regarding the systematics of Campanula (Campanulaceae). Yet, aspects of the evolutionary history, particularly in northwestern North America, remain unresolved. Thus, our primary goal in this study was to infer the phylogenetic positions of northwestern Campanula species within the greater Campanuloideae tree. We combined new sequence data from 5 markers (atpB, rbcL, matK, and trnL-F regions of the chloroplast and the nuclear ITS) representing 12 species of Campanula with previously published datasets for worldwide campanuloids, allowing us to include approximately 75% of North American Campanuleae in a phylogenetic analysis of the Campanuloideae. Because all but one of North American Campanula species are nested within a single campanuloid subclade (the Rapunculus clade), we conducted a separate set of analyses focused specifically on this group. Our findings show that i) the campanuloids have colonized North America at least 6 times, 4 of which led to radiations, ii) all but one North American campanuloid are nested within the Rapunculus clade, iii) in northwestern North America, a C. piperi – C. lasiocarpa ancestor gave rise to a monophyletic Cordilleran clade that is sister to a clade containing C. rotundifolia, iv) within the Cordilleran clade, C. parryi var. parryi and C. parryi var. idahoensis exhibit a deep, species-level genetic divergence, and v) C. rotundifolia is genetically diverse across its range and polyphyletic. Potential causes of diversification and endemism in northwestern North America are discussed

    Genetic correlations between temperature-induced plasticity of life-history traits in a soil arthropod.

    Get PDF
    Temperature is considered one of the most important mediators of phenotypic plasticity in ectotherms. However, the costs and benefits shaping the evolution of different thermal responses are poorly elucidated. One of the possible constraints to phenotypic plasticity is its intrinsic genetic cost, such as genetic linkage or pleiotropy. Genetic coupling of the thermal response curves for different life history traits may significantly affect the evolution of thermal sensitivity in thermally fluctuating environments. We used the collembolan Orchesella cincta to study if there is genetic variation in temperature-induced phenotypic plasticity in life history traits, and if the degree of temperature-induced plasticity is correlated across traits. Egg development rate, juvenile growth rate and egg size of 19 inbred isofemale lines were measured at two temperatures. Our results show that temperature was a highly significant factor for all three traits. Egg development rate and juvenile growth rate increased with increasing temperature, while egg size decreased. Line by temperature interaction was significant for all traits tested; indicating that genetic variation for temperature-induced plasticity existed. The degree of plasticity was significantly positively correlated between egg development rate and growth rate, but plasticity in egg size was not correlated to the other two plasticity traits. The findings suggest that the thermal plasticities of egg development rate and growth rate are partly under the control of the same genes or genetic regions. Hence, evolution of the thermal plasticity of traits cannot be understood in isolation of the response of other traits. If traits have similar and additive effects on fitness, genetic coupling between these traits may well facilitate the evolution of optimal phenotypes. However, for this we need to know the selective forces under field conditions. © 2010 Springer Science+Business Media B.V

    Integrating multiple lines of evidence into historical biogeography hypothesis testing: A bison bison case study

    Get PDF
    One of the grand goals of historical biogeography is to understand how and why species' population sizes and distributions change over time. Multiple types of data drawn from disparate fields, combined into a single modelling framework, are necessary to document changes in a species's demography and distribution, and to determine the drivers responsible for change. Yet truly integrated approaches are challenging and rarely performed. Here, we discuss a modelling framework that integrates spatio-temporal fossil data, ancient DNA, palaeoclimatological reconstructions, bioclimatic envelope modelling and coalescence models in order to statistically test alternative hypotheses of demographic and potential distributional changes for the iconic American bison (Bison bison). Using different assumptions about the evolution of the bioclimatic niche, we generate hypothetical distributional and demographic histories of the species. We then test these demographic models by comparing the genetic signature predicted by serial coalescence against sequence data derived from subfossils and modern populations. Our results supported demographic models that include both climate and human-associated drivers of population declines. This synthetic approach, integrating palaeoclimatology, bioclimatic envelopes, serial coalescence, spatio-temporal fossil data and heterochronous DNA sequences, improves understanding of species' historical biogeogra-phy by allowing consideration of both abiotic and biotic interactions at the population level.© 2014 The Author(s) Published by the Royal Society. All rights reserved.Peer Reviewe
    • …
    corecore