65 research outputs found

    Paracrine Signaling through the JAK/STAT Pathway Activates Invasive Behavior of Ovarian Epithelial Cells in Drosophila

    Get PDF
    AbstractThe JAK/STAT signaling pathway, renowned for its effects on cell proliferation and survival, is constitutively active in various human cancers, including ovarian. We have found that JAK and STAT are required to convert the border cells in the Drosophila ovary from stationary, epithelial cells to migratory, invasive cells. The ligand for this pathway, Unpaired (UPD), is expressed by two central cells within the migratory cell cluster. Mutations in upd or jak cause defects in migration and a reduction in the number of cells recruited to the cluster. Ectopic expression of either UPD or JAK is sufficient to induce extra epithelial cells to migrate. Thus, a localized signal activates the JAK/STAT pathway in neighboring epithelial cells, causing them to become invasive

    Inducible Control of Subcellular RNA Localization Using a Synthetic Protein-RNA Aptamer Interaction

    Get PDF
    Evidence is accumulating in support of the functional importance of subcellular RNA localization in diverse biological contexts. In different cell types, distinct RNA localization patterns are frequently observed, and the available data indicate that this is achieved through a series of highly coordinated events. Classically, cis–elements within the RNA to be localized are recognized by RNA-binding proteins (RBPs), which then direct specific localization of a target RNA. Until now, the precise control of the spatiotemporal parameters inherent to regulating RNA localization has not been experimentally possible. Here, we demonstrate the development and use of a chemically–inducible RNA–protein interaction to regulate subcellular RNA localization. Our system is composed primarily of two parts: (i) the Tet Repressor protein (TetR) genetically fused to proteins natively involved in localizing endogenous transcripts; and (ii) a target transcript containing genetically encoded TetR–binding RNA aptamers. TetR–fusion protein binding to the target RNA and subsequent localization of the latter are directly regulated by doxycycline. Using this platform, we demonstrate that enhanced and controlled subcellular localization of engineered transcripts are achievable. We also analyze rules for forward engineering this RNA localization system in an effort to facilitate its straightforward application to studying RNA localization more generally.National Institutes of Health (U.S.) (Director’s New Innovator Award Program (grant number 1DP2OD007124 )

    Prolonged Mitosis of Neural Progenitors Alters Cell Fate in the Developing Brain

    Get PDF
    Embryonic neocortical development depends on balanced production of progenitors and neurons. Genetic mutations disrupting progenitor mitosis frequently impair neurogenesis; however, the link between altered mitosis and cell fate remains poorly understood. Here we demonstrate that prolonged mitosis of radial glial progenitors directly alters neuronal fate specification and progeny viability. Live imaging of progenitors from a neurogenesis mutant, Magoh(+/-), reveals that mitotic delay significantly correlates with preferential production of neurons instead of progenitors, as well as apoptotic progeny. Independently, two pharmacological approaches reveal a causal relationship between mitotic delay and progeny fate. As mitotic duration increases, progenitors produce substantially more apoptotic progeny or neurons. We show that apoptosis, but not differentiation, is p53 dependent, demonstrating that these are distinct outcomes of mitotic delay. Together our findings reveal that prolonged mitosis is sufficient to alter fates of radial glia progeny and define a new paradigm to understand how mitosis perturbations underlie brain size disorders such as microcephaly

    piggyBac Transposon Somatic Mutagenesis with an Activated Reporter and Tracker (PB-SMART) for Genetic Screens in Mice

    Get PDF
    Somatic forward genetic screens have the power to interrogate thousands of genes in a single animal. Retroviral and transposon mutagenesis systems in mice have been designed and deployed in somatic tissues for surveying hematopoietic and solid tumor formation. In the context of cancer, the ability to visually mark mutant cells would present tremendous advantages for identifying tumor formation, monitoring tumor growth over time, and tracking tumor infiltrations and metastases into wild-type tissues. Furthermore, locating mutant clones is a prerequisite for screening and analyzing most other somatic phenotypes. For this purpose, we developed a system using the piggyBac (PB) transposon for somatic mutagenesis with an activated reporter and tracker, called PB-SMART. The PB-SMART mouse genetic screening system can simultaneously induce somatic mutations and mark mutated cells using bioluminescence or fluorescence. The marking of mutant cells enable analyses that are not possible with current somatic mutagenesis systems, such as tracking cell proliferation and tumor growth, detecting tumor cell infiltrations, and reporting tissue mutagenesis levels by a simple ex vivo visual readout. We demonstrate that PB-SMART is highly mutagenic, capable of tumor induction with low copy transposons, which facilitates the mapping and identification of causative insertions. We further integrated a conditional transposase with the PB-SMART system, permitting tissue-specific mutagenesis with a single cross to any available Cre line. Targeting the germline, the system could also be used to conduct F1 screens. With these features, PB-SMART provides an integrated platform for individual investigators to harness the power of somatic mutagenesis and phenotypic screens to decipher the genetic basis of mammalian biology and disease

    Thrombospondin receptor α2δ-1 promotes synaptogenesis and spinogenesis via postsynaptic Rac1

    Get PDF
    Astrocytes control excitatory synaptogenesis by secreting thrombospondins (TSPs), which function via their neuronal receptor, the calcium channel subunit α2δ-1. α2δ-1 is a drug target for epilepsy and neuropathic pain; thus the TSP–α2δ-1 interaction is implicated in both synaptic development and disease pathogenesis. However, the mechanism by which this interaction promotes synaptogenesis and the requirement for α2δ-1 for connectivity of the developing mammalian brain are unknown. In this study, we show that global or cell-specific loss of α2δ-1 yields profound deficits in excitatory synapse numbers, ultrastructure, and activity and severely stunts spinogenesis in the mouse cortex. Postsynaptic but not presynaptic α2δ-1 is required and sufficient for TSP-induced synaptogenesis in vitro and spine formation in vivo, but an α2δ-1 mutant linked to autism cannot rescue these synaptogenesis defects. Finally, we reveal that TSP–α2δ-1 interactions control synaptogenesis postsynaptically via Rac1, suggesting potential molecular mechanisms that underlie both synaptic development and pathology

    ADAMTS metalloproteases generate active versican fragments that regulate interdigital web regression

    Get PDF
    SummaryWe show that combinatorial mouse alleles for the secreted metalloproteases Adamts5, Adamts20 (bt), and Adamts9 result in fully penetrant soft-tissue syndactyly. Interdigital webs in Adamts5−/−;bt/bt mice had reduced apoptosis and decreased cleavage of the proteoglycan versican; however, the BMP-FGF axis, which regulates interdigital apoptosis was unaffected. BMP4 induced apoptosis, but without concomitant versican proteolysis. Haploinsufficiency of either Vcan or Fbln1, a cofactor for versican processing by ADAMTS5, led to highly penetrant syndactyly in bt mice, suggesting that cleaved versican was essential for web regression. The local application of an aminoterminal versican fragment corresponding to ADAMTS-processed versican, induced cell death in Adamts5−/−;bt/bt webs. Thus, ADAMTS proteases cooperatively maintain versican proteolysis above a required threshold to create a permissive environment for apoptosis. The data highlight the developmental significance of proteolytic action on the ECM, not only as a clearance mechanism, but also as a means to generate bioactive versican fragments

    Ribosome Distribution in HeLa Cells during the Cell Cycle

    Get PDF
    In this study, we employed a surface-specific antibody against the large ribosome subunit to investigate the distribution of ribosomes in cells during the cell cycle. The antibody, anti-L7n, was raised against an expansion segment (ES) peptide from the large subunit ribosomal protein L7, and its ribosome-surface specificity was evident from the positive immuno-reactivity of ribosome particles and the detection of 60 S immune-complex formation by an immuno-electron microscopy. Using immunofluorescent staining, we have microscopically revealed that ribosomes are dispersed in the cytoplasm of cells throughout all phases of the cell cycle, except at the G2 phase where ribosomes show a tendency to gather toward the nuclear envelope. The finding in G2 cells was confirmed by electron microscopy using a morphometric assay and paired t test. Furthermore, further observations have shown that ribosomes are not distributed immune-fluorescently with nuclear envelope markers including the nuclear pore complex, the integral membrane protein gp210, the inner membrane protein lamin B2, and the endoplasm reticulum membrane during cell division we propose that the mechanism associated with ribosome segregation into daughter cells could be independent of the processes of disassembly and reassembly of the nuclear envelope

    Kebab: Kinetochore and EB1 Associated Basic Protein That Dynamically Changes Its Localisation during Drosophila Mitosis

    Get PDF
    Microtubule plus ends are dynamic ends that interact with other cellular structures. Microtubule plus end tracking proteins are considered to play important roles in the regulation of microtubule plus ends. Recent studies revealed that EB1 is the central regulator for microtubule plus end tracking proteins by recruiting them to microtubule plus ends through direct interaction. Here we report the identification of a novel Drosophila protein, which we call Kebab (kinetochore and EB1 associated basic protein), through in vitro expression screening for EB1-interacting proteins. Kebab fused to GFP shows a novel pattern of dynamic localisation in mitosis. It localises to kinetochores weakly in metaphase and accumulates progressively during anaphase. In telophase, it associates with microtubules in central-spindle and centrosomal regions. The localisation to kinetochores depends on microtubules. The protein has a domain most similar to the atypical CH domain of Ndc80, and a coiled-coil domain. The interaction with EB1 is mediated by two SxIP motifs but is not required for the localisation. Depletion of Kebab in cultured cells by RNA interference did not show obvious defects in mitotic progression or microtubule organisation. Generation of mutants lacking the kebab gene indicated that Kebab is dispensable for viability and fertility

    Transgene Excision Has No Impact on In Vivo Integration of Human iPS Derived Neural Precursors

    Get PDF
    The derivation of induced human pluripotent stem cells (hiPS) has generated significant enthusiasm particularly for the prospects of cell-based therapy. But there are concerns about the suitability of iPS cells for in vivo applications due in part to the introduction of potentially oncogenic transcription factors via viral vectors. Recently developed lentiviral vectors allow the excision of viral reprogramming factors and the development of transgene-free iPS lines. However it is unclear if reprogramming strategy has an impact on the differentiation potential and the in vivo behavior of hiPS progeny. Here we subject viral factor-free, c-myc-free and conventionally reprogrammed four-factor human iPS lines to a further challenge, by analyzing their differentiation potential along the 3 neural lineages and over extended periods of time in vitro, as well as by interrogating their ability to respond to local environmental cues by grafting into the striatum. We demonstrate similar and efficient differentiation into neurons, astrocytes and oligodendrocytes among all hiPS and human ES line controls. Upon intracranial grafting in the normal rat (Sprague Dawley), precursors derived from all hiPS lines exhibited good survival and response to environmental cues by integrating into the subventricular zone, acquiring phenotypes typical of type A, B or C cells and migrating along the rostral migratory stream into the olfactory bulb. There was no teratoma or other tumor formation 12 weeks after grafting in any of the 26 animals used in the study. Thus neither factor excision nor persistence of c-myc impact the behavior of hiPS lines in vivo.United States. National Institutes of HealthNew York State Stem Cell ScienceNational Institute of Neurological Disorders and Stroke (U.S.)Starr Foundation (Tri-Institutional Starr Stem Cell Scholars Fellowship
    • …
    corecore