77 research outputs found
Aortic Aneurysms in Loeys-Dietz Syndrome - A Tale of Two Pathways?
Loeys-Dietz syndrome (LDS) is a connective tissue disorder that is characterized by skeletal abnormalities, craniofacial malformations, and a high predisposition for aortic aneurysm. In this issue of the JCI, Gallo et al. developed transgenic mouse strains harboring missense mutations in the genes encoding type I or II TGF-Ī² receptors. These mice exhibited several LDS-associated phenotypes. Despite being functionally defective, the mutated receptors enhanced TGF-Ī² signaling in vivo, inferred by detection of increased levels of phosphorylated Smad2. Aortic aneurysms in these LDS mice were ablated by treatment with the Ang II type 1 (AT1) receptor antagonist losartan. The results from this study will foster further interest into the potential therapeutic implications of AT1 receptor antagonists
PD123319 augments angiotensin II-induced abdominal aortic aneurysms through an AT2 receptor-independent mechanism
BACKGROUND: AT2 receptors have an unclear function on development of abdominal aortic aneurysms (AAAs), although a pharmacological approach using the AT2 receptor antagonist PD123319 has implicated a role. The purpose of the present study was to determine the role of AT2 receptors in AngII-induced AAAs using a combination of genetic and pharmacological approaches. We also defined effects of AT2 receptors in AngII-induced atherosclerosis and thoracic aortic aneurysms.
METHODS AND RESULTS: Male AT2 receptor wild type (AT2 +/y) and deficient (AT2 -/y) mice in an LDL receptor -/- background were fed a saturated-fat enriched diet, and infused with either saline or AngII (500 ng/kg/min). AT2 receptor deficiency had no significant effect on systolic blood pressure during AngII-infusion. While AngII infusion induced AAAs, AT2 receptor deficiency did not significantly affect either maximal width of the suprarenal aorta or incidence of AAAs. The AT2 receptor antagonist PD123319 (3 mg/kg/day) and AngII were co-infused into male LDL receptor -/- mice that were either AT2 +/y or -/y. PD123319 had no significant effect on systolic blood pressure in either wild type or AT2 receptor deficient mice. Consistent with our previous findings, PD123319 increased AngII-induced AAAs. However, this effect of PD123319 occurred irrespective of AT2 receptor genotype. Neither AT2 receptor deficiency nor PD123319 had any significant effect on AngII-induced thoracic aortic aneurysms or atherosclerosis.
CONCLUSIONS: AT2 receptor deficiency does not affect AngII-induced AAAs, thoracic aortic aneurysms and atherosclerosis. PD123319 augments AngII-induced AAAs through an AT2 receptor-independent mechanism
Amlodipine Reduces AngII-Induced Aortic Aneurysms and Atherosclerosis in Hypercholesterolemic Mice
BACKGROUND: The purpose of this study was to determine effects of amlodipine, a dihydropyridine calcium channel blocker, on development of angiotensin II (AngII)-induced vascular pathologies.
METHODS AND RESULTS: Male LDL receptor -/- mice were infused with vehicle, amlodipine (5 mg/kg/d), AngII (1,000 ng/kg/min), or AngII + amlodipine for 4 weeks through osmotic pumps (n=10/group). Mice were fed a saturated fat-enriched diet for 1 week prior to pump implantation and during 4 weeks of infusion. Infusion of amlodipine resulted in plasma concentrations of 32 Ā± 2 ng/ml and 27 Ā± 2 ng/ml for mice in saline + amlodipine and AngII + amlodipine groups, respectively. This infusion rate of amlodipine did not affect AngII-induced increases in systolic blood pressure. Three of 10 (30%) mice infused with AngII died of aortic rupture, while aortic rupture did not occur in mice co-infused with AngII + amlodipine. Suprarenal aortic width and intimal area of ascending aortas were measured to define aortic aneurysms. In the absence of AngII infusion, amlodipine did not change suprarenal aortic width and ascending aortic area. Infusion of AngII led to profound increases of suprarenal aortic width (saline + vehicle versus AngII + vehicle: 0.86 Ā± 0.02 versus 1.72 Ā± 0.26 mm; P=0.0006), whereas co-infusion of AngII and amlodipine diminished abdominal dilation (1.02 Ā± 0.14 mm; P=0.003). As expected, AngII infusion increased mean intimal area of ascending aortas (saline + vehicle versus AngII + vehicle: 8.5 Ā± 0.3 versus 12.5 Ā± 1.1 mm(2); P=0.001), while co-infusion of AngII and amlodipine ablated dilation of the ascending aorta (8.6 Ā± 0.2 mm(2); P=0.03). Co-administration of amlodipine also significantly attenuated AngII-induced atherosclerosis in the thoracic region as quantified by percent lesion area (AngII + vehicle versus AngII + amlodipine: 5.8 Ā± 2.1 % versus 0.3 Ā± 0.1%; P=0.05).
CONCLUSIONS: Amlodipine inhibited AngII-induced aortic aneurysms in both the abdominal and ascending regions, and atherosclerosis in hypercholesterolemic mice
Second Heart FieldāDerived Cells Contribute to Angiotensin IIāMediated Ascending Aortopathies
BACKGROUND: The ascending aorta is a common location for aneurysm and dissection. This aortic region is populated by a mosaic of medial and adventitial cells that are embryonically derived from either the second heart field (SHF) or the cardiac neural crest. SHF-derived cells populate areas that coincide with the spatial specificity of thoracic aortopathies. The purpose of this study was to determine whether and how SHF-derived cells contribute to ascending aortopathies.
METHODS: Ascending aortic pathologies were examined in patients with sporadic thoracic aortopathies and angiotensin II (AngII)āinfused mice. Ascending aortas without overt pathology from AngII-infused mice were subjected to mass spectrometryā assisted proteomics and molecular features of SHF-derived cells were determined by single-cell transcriptomic analyses. Genetic deletion of either Lrp1 (low-density lipoprotein receptorārelated protein 1) or Tgfbr2 (transforming growth factorāĪ² receptor type 2) in SHF-derived cells was conducted to examine the effect of SHF-derived cells on vascular integrity.
RESULTS: Pathologies in human ascending aortic aneurysmal tissues were predominant in outer medial layers and adventitia. This gradient was mimicked in mouse aortas after AngII infusion that was coincident with the distribution of SHF-derived cells. Proteomics indicated that brief AngII infusion before overt pathology occurred evoked downregulation of smooth muscle cell proteins and differential expression of extracellular matrix proteins, including several LRP1 ligands. LRP1 deletion in SHFderived cells augmented AngII-induced ascending aortic aneurysm and rupture. Single-cell transcriptomic analysis revealed that brief AngII infusion decreased Lrp1 and Tgfbr2 mRNA abundance in SHF-derived cells and induced a unique fibroblast population with low abundance of Tgfbr2 mRNA. SHF-specific Tgfbr2 deletion led to embryonic lethality at E12.5 with dilatation of the outflow tract and retroperitoneal hemorrhage. Integration of proteomic and single-cell transcriptomics results identified PAI1 (plasminogen activator inhibitor 1) as the most increased protein in SHF-derived smooth muscle cells and fibroblasts during AngII infusion. Immunostaining revealed a transmural gradient of PAI1 in both ascending aortas of AngIIinfused mice and human ascending aneurysmal aortas that mimicked the gradient of medial and adventitial pathologies.
CONCLUSIONS: SHF-derived cells exert a critical role in maintaining vascular integrity through LRP1 and transforming growth factorāĪ² signaling associated with increases of aortic PAI1
Angiotensin II infusion promotes ascending aortic aneurysms: attenuation by CCR2 deficiency in apoEā/ā mice
AngII (angiotensin II) induces atherosclerosis and AAAs (abdominal aortic aneurysms) through multiple proposed mechanisms, including chemotaxis. Therefore, we determined the effects of whole-body deficiency of the chemokine receptor CCR2 (CC chemokine receptor 2) on these diseases. To meet this objective, apoE (apolipoprotein E)ā/ā mice that were either CCR2+/+ or CCR2ā/ā, were infused with either saline or AngII (1000Ā ngĀ·kgā1 of body weightĀ·minā1) for 28Ā days via mini-osmotic pumps. Deficiency of CCR2 markedly attenuated both atherosclerosis and AAAs, unrelated to systolic blood pressure or plasma cholesterol concentrations. During the course of the present study, we also observed that AngII infusion led to large dilatations that were restricted to the ascending aortic region of apoEā/ā mice. The aortic media in most of the dilated area was thickened. In regions of medial thickening, distinct elastin layers were discernable. There was an expansion of the distance between elastin layers in a gradient from the intimal to the adventitial aspect of the media. This pathology differed in a circumscribed area of the anterior region of ascending aortas in which elastin breaks were focal and almost transmural. All regions of the ascending aorta of AngII-infused mice had diffuse medial macrophage accumulation. Deficiency of CCR2 greatly attenuated the AngII-induced lumen dilatation in the ascending aorta. This new model of ascending aortic aneurysms has pathology that differs markedly from AngII-induced atherosclerosis or AAAs, but all vascular pathologies were attenuated by CCR2 deficiency
IL-5 links adaptive and natural immunity in reducing atherosclerotic disease
Oxidized LDL induces changes in several facets of the immune system, although the relationships between these facets and their contributions to atherogenesis have yet to be fully elucidated. A report in this issue of the JCI provides a novel demonstration of the adaptive immune system influencing the production of natural antibodies. The results demonstrate that injection of malondialdehyde-modified LDL promotes a Th2 response that in turn increases the titers of the natural antibody T15/EO6, which recognizes the oxidized phospholipid POVPC. Atherosclerotic lesion size in LDL receptorādeficient mice is reduced as a consequence of the increase in natural antibody titers, and IL-5 is identified as the link between the adaptive and natural immune systems
Involvement of the renin- angiotensin system in abdominal and thoracic aortic aneurysms. Clin Sci (2012
A B S T R A C T Aortic aneurysms are relatively common maladies that may lead to the devastating consequence of aortic rupture. AAAs (abdominal aortic aneurysms) and TAAs (thoracic aortic aneurysms) are two common forms of aneurysmal diseases in humans that appear to have distinct pathologies and mechanisms. Despite this divergence, there are numerous and consistent demonstrations that overactivation of the RAS (renin-angiotensin system) promotes both AAAs and TAAs in animal models. For example, in mice, both AAAs and TAAs are formed during infusion of AngII (angiotensin II), the major bioactive peptide in the RAS. There are many proposed mechanisms by which the RAS initiates and perpetuates aortic aneurysms, including effects of AngII on a diverse array of cell types and mediators. These experimental findings are complemented in humans by genetic association studies and retrospective analyses of clinical data that generally support a role of the RAS in both AAAs and TAAs. Given the lack of a validated pharmacological therapy for any form of aortic aneurysm, there is a pressing need to determine whether the consistent findings on the role of the RAS in animal models are translatable to humans afflicted with these diseases. The present review compiles the recent literature that has shown the RAS as a critical component in the pathogenesis of aortic aneurysms
- ā¦