44 research outputs found

    Otitis Media in a New Mouse Model for CHARGE Syndrome with a Deletion in the Chd7 Gene

    Get PDF
    Otitis media is a middle ear disease common in children under three years old. Otitis media can occur in normal individuals with no other symptoms or syndromes, but it is often seen in individuals clinically diagnosed with genetic diseases such as CHARGE syndrome, a complex genetic disease caused by mutation in the Chd7 gene and characterized by multiple birth defects. Although otitis media is common in human CHARGE syndrome patients, it has not been reported in mouse models of CHARGE syndrome. In this study, we report a mouse model with a spontaneous deletion mutation in the Chd7 gene and with chronic otitis media of early onset age accompanied by hearing loss. These mice also exhibit morphological alteration in the Eustachian tubes, dysregulation of epithelial proliferation, and decreased density of middle ear cilia. Gene expression profiling revealed up-regulation of Muc5ac, Muc5b and Tgf-β1 transcripts, the products of which are involved in mucin production and TGF pathway regulation. This is the first mouse model of CHARGE syndrome reported to show otitis media with effusion and it will be valuable for studying the etiology of otitis media and other symptoms in CHARGE syndrome

    An Outside-Inside Evolution in Gender and Professional Work

    Full text link

    Governing by Panic: The Politics of the Eurozone Crisis

    Full text link

    Clinical and Molecular Findings in Osteoporosis-Pseudoglioma Syndrome

    Get PDF
    Mutations in the low-density lipoprotein receptor–related protein 5 gene (LRP5) cause autosomal recessive osteoporosis-pseudoglioma syndrome (OPPG). We sequenced the coding exons of LRP5 in 37 probands suspected of having OPPG on the basis of the co-occurrence of severe congenital or childhood-onset visual impairment with bone fragility or osteoporosis recognized by young adulthood. We found two putative mutant alleles in 26 probands, only one mutant allele in 4 probands, and no mutant alleles in 7 probands. Looking for digenic inheritance, we sequenced the genes encoding the functionally related receptor LRP6, an LRP5 coreceptor FZD4, and an LRP5 ligand, NDP, in the four probands with one mutant allele, and, looking for locus heterogeneity, we sequenced FZD4 and NDP in the seven probands with no mutations, but we found no additional mutations. When we compared clinical features between probands with and without LRP5 mutations, we found no difference in the severity of skeletal disease, prevalence of cognitive impairment, or family history of consanguinity. However, four of the seven probands without detectable mutations had eye pathology that differed from pathology previously described for OPPG. Since many LRP5 mutations are missense changes, to differentiate between a disease-causing mutation and a benign variant, we measured the ability of wild-type and mutant LRP5 to transduce Wnt and Norrin signal ex vivo. Each of the seven OPPG mutations tested, had reduced signal transduction compared with wild-type mutations. These results indicate that early bilateral vitreoretinal eye pathology coupled with skeletal fragility is a strong predictor of LRP5 mutation and that mutations in LRP5 cause OPPG by impairing Wnt and Norrin signal transduction

    Identification of a heterozygous <i>Chd7</i> deletion mutation (<i>Chd7<sup>Ome/+</sup></i>) in circling mice.

    No full text
    <p>(<b>A</b>) Quantitative PCR analysis of <i>Chd7</i> exons 1, 2, 3, 4, 6, 18, and 38 on chromosome 4 using genomic DNA isolated from wild-type (WT1 and WT2) and heterozygous mutant mice (HET1 and HET2). Genomic regions corresponding to the <i>Spag9</i> (on Chr 11) gene and the <i>Rlbp1l1</i> gene (also known as <i>Clvs1</i>; located on Chr 4, downstream of <i>Chd7</i>) were also amplified and serve as additional controls. Data were normalized to <i>Spag9</i> and the band for this gene was assigned the value of 1.0 (<i>y</i> axis). (<b>B</b>) qPCR analysis of cDNA generated from wild-type and <i>Chd7</i> mutant mouse brain RNA. PCR primers anchored in exons 1 and 4 (1F/4R) yield a positive result only for cDNA from heterozygous mutant mice. This product fails to amplify from wild-type cDNA because of its large size (∼2 kb). As expected for a heterozygous deletion mutation, PCR primers anchored in <i>Chd7</i> exons 1 and 2 (1F/2R) yield amplicons from both wild-type and mutant samples. “Neg” indicates a non-template control sample. A 100-bp standard was run in the lane near the right edge of the gel. Asterisks indicate bands that were isolated for sequencing in C. (<b>C</b>) Partial cDNA sequence of the bands isolated in panel B verifies that the mRNA transcribed from the mutant allele results from aberrant splicing of exons 1 and 4. The translation initiation codon is indicated in exon 2 of the wild-type allele, and has been deleted from the mutant allele.</p
    corecore