960 research outputs found

    Phylogeny and taxonomy of the Ophiostoma piceae complex and the Dutch elm disease fungi

    Get PDF
    The Ophiostoma piceae complex forms a monophyletic group of insect-dispersed pyrenomycetes with synnemata (Pesotum) and micronematous (Sporothrix) synanamorphs. Other species of Ophios-toma outside of the O. piceae complex that form syn-nemata lack the Sporothrix state. The nine recognized species within the 0. piceae complex are delimited by synnema morphology, growth rate at 32 C, mating reactions and sequences of the internal transcribed spacer (ITS) region of the rDNA operon. Phyloge-netic analysis of the ITS region suggests two major clades in the complex, one that causes bluestain in primarily coniferous hosts and the other on primarily hardwood hosts. In the coniferous group are O. pi-ceae, O. canum, O. floccosum and the recently de-scribed O. setosum (anamorph Pesotum cupulatum sp. nov.). In the hardwood group are O. querci, O. caton-ianum, and the Dutch elm disease fungi: O. ulmi, O. novo-ulmi and O. himal-ulmi. Restriction fragment length polymorphisms of the ITS region are shown to be a convenient diagnostic tool for delimiting these species

    Neural Underpinnings of Distortions in the Experience of Time Across Senses

    Get PDF
    Auditory signals (A) are perceived as lasting longer than visual signals (V) of the same physical duration when they are compared together. Despite considerable debate about how this illusion arises psychologically, the neural underpinnings have not been studied. We used functional magnetic resonance imaging (fMRI) to investigate the neural bases of audiovisual temporal distortions and more generally, intersensory timing. Adults underwent fMRI while judging the relative duration of successively presented standard interval–comparison interval (CI) pairs, which were unimodal (A–A, V–V) or crossmodal (V–A, A–V). Mechanisms of time dilation and compression were identified by comparing the two crossmodal pairs. Mechanisms of intersensory timing were identified by comparing the unimodal and crossmodal conditions. The behavioral results showed that auditory CIs were perceived as lasting longer than visual CIs. There were three novel fMRI results. First, time dilation and compression were distinguished by differential activation of higher-sensory areas (superior temporal, posterior insula, middle occipital), which typically showed stronger effective connectivity when time was dilated (V–A). Second, when time was compressed (A–V) activation was greater in frontal cognitive-control centers, which guide decision making. These areas did not exhibit effective connectivity. Third, intrasensory timing was distinguished from intersensory timing partly by decreased striatal and increased superior parietal activation. These regions showed stronger connectivity with visual, memory, and cognitive-control centers during intersensory timing. Altogether, the results indicate that time dilation and compression arise from the connectivity strength of higher-sensory systems with other areas. Conversely, more extensive network interactions are needed with core timing (striatum) and attention (superior parietal) centers to integrate time codes for intersensory signals

    Scholarly Concentrations: A Novel Platform for Delivery of Health Systems Science Exposure and Highlight Unique Learning Environments Across the Nine Campuses of Indiana University School of Medicine

    Get PDF
    Presented as a Poster at 2020 IUSM Education Day.Rapidly evolving challenges in health care mandate changes in the way health care professionals are educated. How do we integrate the need for new and different content into the medical school curriculum? One area of particular focus is called Health Systems Science. Health Systems Science is being called the 3rd leg of modern medical education to complement the foundational and clinical sciences curricula. IU School of Medicine is integrating Health Systems Science content into Scholarly Concentrations. Scholarly Concentrations is a program offering students longitudinal educational enhancement through coursework and scholarly work

    Aberrant Intrinsic Activity and Connectivity in Cognitively Normal Parkinson’s Disease

    Get PDF
    Disturbances in intrinsic activity during resting-state functional MRI (rsfMRI) are common in Parkinson’s disease (PD), but have largely been studied in a priori defined subnetworks. The cognitive significance of abnormal intrinsic activity is also poorly understood, as are abnormalities that precede the onset of mild cognitive impairment. To address these limitations, we leveraged three different analytic approaches to identify disturbances in rsfMRI metrics in 31 cognitively normal PD patients (PD-CN) and 30 healthy adults. Subjects were screened for mild cognitive impairment using the Movement Disorders Society Task Force Level II criteria. Whole-brain data-driven analytic approaches first analyzed the amplitude of low-frequency intrinsic fluctuations (ALFF) and regional homogeneity (ReHo), a measure of local connectivity amongst functionally similar regions. We then examined if regional disturbances in these metrics altered functional connectivity with other brain regions. We also investigated if abnormal rsfMRI metrics in PD-CN were related to brain atrophy and executive, visual organization, and episodic memory functioning. The results revealed abnormally increased and decreased ALFF and ReHo in PD-CN patients within the default mode network (posterior cingulate, inferior parietal cortex, parahippocampus, entorhinal cortex), sensorimotor cortex (primary motor, pre/post-central gyrus), basal ganglia (putamen, caudate), and posterior cerebellar lobule VII, which mediates cognition. For default mode network regions, we also observed a compound profile of altered ALFF and ReHo. Most regional disturbances in ALFF and ReHo were associated with strengthened long-range interactions in PD-CN, notably with regions in different networks. Stronger long-range functional connectivity in PD-CN was also partly expanded to connections that were outside the networks of the control group. Abnormally increased activity and functional connectivity appeared to have a pathological, rather than compensatory influence on cognitive abilities tested in this study. Receiver operating curve analyses demonstrated excellent sensitivity (≥90%) of rsfMRI variables in distinguishing patients from controls, but poor accuracy for brain volume and cognitive variables. Altogether these results provide new insights into the topology, cognitive relevance, and sensitivity of aberrant intrinsic activity and connectivity that precedes clinically significant cognitive impairment. Longitudinal studies are needed to determine if these neurocognitive associations presage the development of future mild cognitive impairment or dementia

    Abnormal white matter blood-oxygen-level-dependent signals in chronic mild traumatic brain injury

    Get PDF
    Concussion, or mild traumatic brain injury (mTBI), can cause persistent behavioral symptoms and cognitive impairment, but it is unclear if this condition is associated with detectable structural or functional brain changes. At two sites, chronic mTBI human subjects with persistent post-concussive symptoms (three months to five years after injury) and age- and education-matched healthy human control subjects underwent extensive neuropsychological and visual tracking eye movement tests. At one site, patients and controls also performed the visual tracking tasks while blood-oxygen-level-dependent (BOLD) signals were measured with functional magnetic resonance imaging. Although neither neuropsychological nor visual tracking measures distinguished patients from controls at the level of individual subjects, abnormal BOLD signals were reliably detected in patients. The most consistent changes were localized in white matter regions: anterior internal capsule and superior longitudinal fasciculus. In contrast, BOLD signals were normal in cortical regions, such as the frontal eye field and intraparietal sulcus, that mediate oculomotor and attention functions necessary for visual tracking. The abnormal BOLD signals accurately differentiated chronic mTBI patients from healthy controls at the single-subject level, although they did not correlate with symptoms or neuropsychological performance. We conclude that subjects with persistent post-concussive symptoms can be identified years after their TBI using fMRI and an eye movement task despite showing normal structural MRI and DTI

    Exposing the myths of household water insecurity in the global north: A critical review

    Get PDF
    Safe and secure water is a cornerstone of modern life in the global North. This article critically examines a set of prevalent myths about household water in high-income countries, with a focus on Canada and the United States. Taking a relational approach, we argue that household water insecurity is a product of institutionalized structures and power, manifests unevenly through space and time, and is reproduced in places we tend to assume are the most water-secure in the world. We first briefly introduce “modern water” and the modern infrastructural ideal, a highly influential set of ideas that have shaped household water provision and infrastructure development over the past two centuries. Against this backdrop, we consolidate evidence to disrupt a set of narratives about water in high-income countries: the notion that water access is universal, clean, affordable, trustworthy, and uniformly or equitably governed. We identify five thematic areas of future research to delineate an agenda for advancing scholarship and action—including challenges of legal and regulatory regimes, the housing-water nexus, water affordability, and water quality and contamination. Data gaps underpin the experiences of household water insecurity. Taken together, our review of water security for households in high-income countries provides a conceptual map to direct critical research in this area for the coming years. This article is categorized under: Human Water \u3e Human Water

    Neurobehavioral Mechanisms of Temporal Processing Deficits in Parkinson's Disease

    Get PDF
    Parkinson's disease (PD) disrupts temporal processing, but the neuronal sources of deficits and their response to dopamine (DA) therapy are not understood. Though the striatum and DA transmission are thought to be essential for timekeeping, potential working memory (WM) and executive problems could also disrupt timing.The present study addressed these issues by testing controls and PD volunteers 'on' and 'off' DA therapy as they underwent fMRI while performing a time-perception task. To distinguish systems associated with abnormalities in temporal and non-temporal processes, we separated brain activity during encoding and decision-making phases of a trial. Whereas both phases involved timekeeping, the encoding and decision phases emphasized WM and executive processes, respectively. The methods enabled exploration of both the amplitude and temporal dynamics of neural activity. First, we found that time-perception deficits were associated with striatal, cortical, and cerebellar dysfunction. Unlike studies of timed movement, our results could not be attributed to traditional roles of the striatum and cerebellum in movement. Second, for the first time we identified temporal and non-temporal sources of impaired time perception. Striatal dysfunction was found during both phases consistent with its role in timekeeping. Activation was also abnormal in a WM network (middle-frontal and parietal cortex, lateral cerebellum) during encoding and a network that modulates executive and memory functions (parahippocampus, posterior cingulate) during decision making. Third, hypoactivation typified neuronal dysfunction in PD, but was sometimes characterized by abnormal temporal dynamics (e.g., lagged, prolonged) that were not due to longer response times. Finally, DA therapy did not alleviate timing deficits.Our findings indicate that impaired timing in PD arises from nigrostriatal and mesocortical dysfunction in systems that mediate temporal and non-temporal control-processes. However, time perception impairments were not improved by DA treatment, likely due to inadequate restoration of neuronal activity and perhaps corticostriatal effective-connectivity
    corecore