9 research outputs found

    Optimization of ethylene glycol production from (d)-xylose via a synthetic pathway implemented in Escherichia coli

    Get PDF
    BACKGROUND: Ethylene glycol (EG) is a bulk chemical that is mainly used as an anti-freezing agent and a raw material in the synthesis of plastics. Production of commercial EG currently exclusively relies on chemical synthesis using fossil resources. Biochemical production of ethylene glycol from renewable resources may be more sustainable. RESULTS: Herein, a synthetic pathway is described that produces EG in Escherichia coli through the action of (d)-xylose isomerase, (d)-xylulose-1-kinase, (d)-xylulose-1-phosphate aldolase, and glycolaldehyde reductase. These reactions were successively catalyzed by the endogenous xylose isomerase (XylA), the heterologously expressed human hexokinase (Khk-C) and aldolase (Aldo-B), and an endogenous glycolaldehyde reductase activity, respectively, which we showed to be encoded by yqhD. The production strain was optimized by deleting the genes encoding for (d)-xylulose-5 kinase (xylB) and glycolaldehyde dehydrogenase (aldA), and by overexpressing the candidate glycolaldehyde reductases YqhD, GldA, and FucO. The strain overproducing FucO was the best EG producer reaching a molar yield of 0.94 in shake flasks, and accumulating 20 g/L EG with a molar yield and productivity of 0.91 and 0.37 g/(L.h), respectively, in a controlled bioreactor under aerobic conditions. CONCLUSIONS: We have demonstrated the feasibility to produce EG from (d)-xylose via a synthetic pathway in E. coli at approximately 90 % of the theoretical yield. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12934-015-0312-7) contains supplementary material, which is available to authorized users

    Identificação de resĂ­duos de aminoĂĄcidos envolvidos no transporte ativo de açĂșcares pela permease AGT1 de saccharomyces cerevisiae

    No full text
    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro de CiĂȘncias BiolĂłgicas. Programa de PĂłs-graduação em BiotecnologiaEm Saccharomyces cerevisiae, a permease codificada pelo gene AGT1 Ă© responsĂĄvel pelo transporte ativo de uma sĂ©rie de a-glicosĂ­deos usados em diversas aplicaçÔes industriais de leveduras, como panificação, cervejaria, produção de bebidas destiladas e ĂĄlcool combustĂ­vel. O transporte destes açĂșcares para dentro da cĂ©lula, atravĂ©s de proteĂ­nas transportadoras, Ă© o passo inicial para seu metabolismo, e tambĂ©m constitui um fator limitante na fermentação do açĂșcar. Com o intuito de compreender detalhes moleculares do mecanismo de transporte e contribuir para a otimização do processo fermentativo, no presente trabalho foi analisado os resĂ­duos de aminoĂĄcidos da permease Agt1p que poderiam estar envolvidos na ligação do prĂłton e/ou especificidade do substrato. Analisando a estrutura prevista para o transportador Agt1p, identificamos 4 resĂ­duos de aminoĂĄcidos carregados em seus segmentos transmembrana (Glu-120, Asp-123, Glu-167 e Arg-504), resĂ­duos que estĂŁo significativamente conservados nas mesmas posiçÔes em outros genes de transportadores de a-glicosĂ­deos em Saccharomyces, Torulaspora, Kluyveromyces e Candida. Permeases Agt1p mutantes nos resĂ­duos Glu-120, Asp-123 e Arg-504 foram geradas por mutagĂȘnese sĂ­tio-dirigida, expressadas em uma cepa agt1?, e a funcionalidade das permeases foi testada atravĂ©s do crescimento em maltotriose. A substituição do resĂ­duo Arg-504 pela alanina aboliu completamente a utilização de maltotriose pelas cĂ©lulas, enquanto que as permeases mutantes geradas pela substituição do Asp-123 pela glicina ou do Glu-120 pela alanina ocasionaram menores taxas de consumo de maltotriose e menor rendimento de etanol quando comparado ao transportador Agt1p normal, porĂ©m nĂŁo impediram o crescimento em maltotriose. A atividade de transporte da permease Agt1p normal ou dos mutantes derivados tambĂ©m foi avaliada pelo transporte de pNPaG (substrato especĂ­fico para o transportador Agt1p) e pelo transporte ativo de outros a-glicosĂ­deos (maltose, maltotriose, trealose, sacarose e a-metil glicosĂ­deo). Nesses ensaios, a mutação R504A ocasionou a maior perda na atividade de transporte da permease, tendo em vista que apresentou taxas similares Ă s cĂ©lulas sem a permease Agt1p. Em contrapartida, os mutantes E120A e D123G apresentaram atividades de transporte de pNPaG e de co-transporte açĂșcar-H+ inferiores Ă  observada para o transportador Agt1p normal, condizendo com o perfil de utilização de maltotriose. Apesar das diferentes atividades de transporte encontradas para as permeases construĂ­das, todas essas permeases (normal ou mutantes) quando fusionadas Ă  GFP em sua extremidade C-terminal apresentaram-se normalmente localizadas na membrana plasmĂĄtica. Portanto, os resultados demonstram o envolvimento dos resĂ­duos mutados no transporte ativo de açĂșcares realizado pela permease Agt1p, sugerindo a participação dos resĂ­duos Glu-120 e Asp-123 na translocação do prĂłton, e de Arg-504 na ligação do substrato. PorĂ©m, estudos ainda sĂŁo necessĂĄrios para melhor esclarecer o mecanismo de transporte ativo realizado pela permease Agt1p, o que certamente Ă© de grande relevĂąncia para o desenvolvimento de estratĂ©gias que permitam a otimização dos processos fermentativos industriais

    Molecular Analysis of Maltotriose Active Transport and Fermentation by Saccharomyces cerevisiae Reveals a Determinant Role for the AGT1 Permease▿

    No full text
    Incomplete and/or sluggish maltotriose fermentation causes both quality and economic problems in the ale-brewing industry. Although it has been proposed previously that the sugar uptake must be responsible for these undesirable phenotypes, there have been conflicting reports on whether all the known α-glucoside transporters in Saccharomyces cerevisiae (MALx1, AGT1, and MPH2 and MPH3 transporters) allow efficient maltotriose utilization by yeast cells. We characterized the kinetics of yeast cell growth, sugar consumption, and ethanol production during maltose or maltotriose utilization by several S. cerevisiae yeast strains (both MAL constitutive and MAL inducible) and by their isogenic counterparts with specific deletions of the AGT1 gene. Our results clearly showed that yeast strains carrying functional permeases encoded by the MAL21, MAL31, and/or MAL41 gene in their plasma membranes were unable to utilize maltotriose. While both high- and low-affinity transport activities were responsible for maltose uptake from the medium, in the case of maltotriose, the only low-affinity (Km, 36 ± 2 mM) transport activity was mediated by the AGT1 permease. In conclusion, the AGT1 transporter is required for efficient maltotriose fermentation by S. cerevisiae yeasts, highlighting the importance of this permease for breeding and/or selection programs aimed at improving sluggish maltotriose fermentations

    Engineering of a Synthetic Metabolic Pathway for the Assimilation of (d)‑Xylose into Value-Added Chemicals

    No full text
    A synthetic pathway for (d)-xylose assimilation was stoichiometrically evaluated and implemented in Escherichia coli strains. The pathway proceeds via isomerization of (d)-xylose to (d)-xylulose, phosphorylation of (d)-xylulose to obtain (d)-xylulose-1-phosphate (X1P), and aldolytic cleavage of the latter to yield glycolaldehyde and DHAP. Stoichiometric analyses showed that this pathway provides access to ethylene glycol with a theoretical molar yield of 1. Alternatively, both glycolaldehyde and DHAP can be converted to glycolic acid with a theoretical yield that is 20% higher than for the exclusive production of this acid via the glyoxylate shunt. Simultaneous expression of xylulose-1 kinase and X1P aldolase activities, provided by human ketohexokinase-C and human aldolase-B, respectively, restored growth of a (d)-xylulose-5-kinase mutant on xylose. This strain produced ethylene glycol as the major metabolic endproduct. Metabolic engineering provided strains that assimilated the entire C2 fraction into the central metabolism or that produced 4.3 g/L glycolic acid at a molar yield of 0.9 in shake flasks
    corecore