42 research outputs found

    Marine natural products: chemical and biological potential of seaweeds and their endophytic fungi

    Get PDF
    Marine natural products have currently been recognized as the most promising source of bioactive substances for drug discovery research. In this review, extraordinary metabolites from marine algae species are illustrated, as well as approaches for their isolation and determination of their biological properties and pharmaceutical potential. Furthermore, marine endophytic microorganisms (from marine algae) are presented as a new subject for extensive investigation to find novel natural products, which make them a potentially rich and innovative source for new drug candidates

    Credneramides A and B: Neuromodulatory Phenethylamine and Isopentylamine Derivatives of a Vinyl Chloride-Containing Fatty Acid from cf. Trichodesmium sp. nov.

    Get PDF
    Credneramides A (1) and B (2), two vinyl chloride-containing metabolites, were isolated from a Papua New Guinea collection of cf. Trichodesmium sp. nov. and expand a recently described class of vinyl chloride-containing natural products. The precursor fatty acid, credneric acid (3), was isolated from both the aqueous and organic fractions of the parent fraction as well as from another geographically and phylogenetically distinct cyanobacterial collection (Panama). Credneramides A and B inhibited spontaneous calcium oscillations in murine cerebrocortical neurons at low micromolar concentrations (1, IC 50 4.0 μM; 2, IC 50 3.8 μM).Credneramides A (1) and B (2), two vinyl chloride-containing metabolites, were isolated from a Papua New Guinea collection of cf. Trichodesmium sp. nov. and expand a recently described class of vinyl chloride-containing natural products. The precursor fatty acid, credneric acid (3), was isolated from both the aqueous and organic fractions of the parent fraction as well as from another geographically and phylogenetically distinct cyanobacterial collection (Panama). Credneramides A and B inhibited spontaneous calcium oscillations in murine cerebrocortical neurons at low micromolar concentrations (1, IC 50 4.0 μM; 2, IC 50 3.8 μM)

    Skin Irritation Testing beyond Tissue Viability: Fucoxanthin Effects on Inflammation, Homeostasis, and Metabolism

    Get PDF
    UV light catalyzes the ozone formation from air pollutants, like nitrogen oxides. Since ozone reacts with cutaneous sebum lipids to peroxides and, thus, promotes inflammation, tumorigenesis, and aging, even broad-spectrum sunscreens cannot properly protect skin. Meanwhile, xanthophylls, like fucoxanthin, proved their antioxidant and cytoprotective functions, but the safety of their topical application in human cell-based models remains unknown. Aiming for a more detailed insight into the cutaneous fucoxanthin toxicity, we assessed the tissue viability according to OECD test guideline no. 439 as well as changes in inflammation (IL-1α, IL-6, IL-8), homeostasis (EGFR, HSPB1) and metabolism (NAT1). First, we proved the suitability of our 24-well-based reconstructed human skin for irritation testing. Next, we dissolved 0.5% fucoxanthin either in alkyl benzoate or in ethanol and applied both solutions onto the tissue surface. None of the solutions decreased RHS viability below 50%. In contrast, fucoxanthin ameliorated the detrimental effects of ethanol and reduced the gene expression of pro-inflammatory interleukins 6 and 8, while increasing NAT1 gene expression. In conclusion, we developed an organ-on-a-chip compatible RHS, being suitable for skin irritation testing beyond tissue viability assessment. Fucoxanthin proved to be non-irritant in RHS and already showed first skin protective effects following topical application

    Discovery and Synthesis of Caracolamide A, an Ion Channel Modulating Dichlorovinylidene Containing Phenethylamide from a Panamanian Marine Cyanobacterium cf. Symploca Species

    Get PDF
    A recent untargeted metabolomics investigation into the chemical profile of 10 organic extracts from cf. Symploca spp. revealed several interesting chemical leads for further natural product drug discovery. Subsequent targetdirected isolation efforts with one of these, a Panamanian marine cyanobacterium cf. Symploca sp., yielded a phenethylamide metabolite that terminates in a relatively rare gemdichlorovinylidene moiety, caracolamide A (1), along with a known isotactic polymethoxy-1-alkene (2). Detailed NMR and HRESIMS analyses were used to determine the structures of these molecules, and compound 1 was confirmed by a threestep synthesis. Pure compound 1 was shown to have in vitro calcium influx and calcium channel oscillation modulatory activity when tested as low as 10 pM using cultured murine cortical neurons, but was not cytotoxic to NCI-H460 human non-small-cell lung cancer cells in vitro (IC50 > 10 μM).A recent untargeted metabolomics investigation into the chemical profile of 10 organic extracts from cf. Symploca spp. revealed several interesting chemical leads for further natural product drug discovery. Subsequent targetdirected isolation efforts with one of these, a Panamanian marine cyanobacterium cf. Symploca sp., yielded a phenethylamide metabolite that terminates in a relatively rare gemdichlorovinylidene moiety, caracolamide A (1), along with a known isotactic polymethoxy-1-alkene (2). Detailed NMR and HRESIMS analyses were used to determine the structures of these molecules, and compound 1 was confirmed by a threestep synthesis. Pure compound 1 was shown to have in vitro calcium influx and calcium channel oscillation modulatory activity when tested as low as 10 pM using cultured murine cortical neurons, but was not cytotoxic to NCI-H460 human non-small-cell lung cancer cells in vitro (IC50 > 10 μM)

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    4-(hidroximetil)-benzenossulfonato de potássio: metabólito inédito isolado da alga marinha Bostrychia tenella (Rhodomelaceae, ceramiales) Potassium 4-(hydroxymethyl)-benzenosulfonate: a novel metabolite isolated from the marine red alga Bostrychia tenella (Rhodomelaceae, ceramiales)

    Get PDF
    <abstract language="eng">Chemical investigation of the dichloromethane/methanol extract of the marine alga Bostrychia tenella has led to the isolation of two aromatic compounds, the new sulfate metabolite potassium 4-(hydroxymethyl)-benzenosulfonate (1) and the compound 1-methoxyphenethyl alcohol (2), described previously as a synthetic product. Their structures were determined by spectroscopic methods including NMR, MS, IR and by comparison with literature data

    Collision-Induced Dissociation Analysis of Brevianamide A and C in Electrospray Ionization Mass Spectrometry

    No full text
    Brevianamides A and C are isomeric cyclic peptides with several reported biological activities, isolated from diverse microorganisms. Currently, there has been no previous investigation of brevianamide fragmentation utilizing electrospray ionization mass spectrometry (ESI-MS). In this work experiments were carried out in the positive mode using two different spectrometers (low and high resolution) with an ESI source. Computational chemistry studies helped identify the protonation sites based upon atomic charges, proton affinities and molecular orbitals, computed using the B3LYP/6-31++G (d,p) model. The data suggests that the presence of the allylic position of the lactamic N in brevianamides C governs its fragmentation pathways. Distinguishing between brevianamides A and C using positive ion electrospray tandem mass spectrometry (ESI(+)MS/MS) is made possible by the spectral difference of each isomer and offers an alternative to other spectroscopic techniques

    Chemical constituents from red algae Bostrychia radicans (Rhodomelaceae): new amides and phenolic compounds

    Get PDF
    This study describes the isolation and structural determination of two amides, isolated for the first time: N,4-dihydroxy-N-(2'-hydroxyethyl)-benzamide (0.019%) and N,4-dihydroxy-N-(2'-hydroxyethyl)-benzeneacetamide (0.023%). These amides, produced by the red macroalgae Bostrychia radicans, had their structures assigned by NMR spectral data and MS analyses. In addition, this chemical study led to the isolation of cholesterol, heptadecane, squalene, trans-phytol, neophytadiene, tetradecanoic and hexadecanoic acids, methyl hexadecanoate and methyl 9-octadecenoate, 4-(methoxymethyl)-phenol, 4-hydroxybenzaldehyde, methyl 4-hydroxybenzeneacetate, methyl 2-hydroxy-3-(4-hydroxyphenyl)-propanoate, hydroquinone, methyl 4-hydroxymandelate, methyl 4-hydroxybenzoate, 4-hydroxybenzeneacetic acid and (4-hydroxyphenyl)-oxo-acetaldehyde. This is the first report concerning these compounds in B. radicans, contributing by illustrating the chemical diversity within the Rhodomelaceae family
    corecore