2,565 research outputs found

    Large-Eddy Simulation of Axisymmetric Compression Corner Flow

    Get PDF
    The Wall-Modeled Large Eddy Simulation (WMLES) approach is used to study the interaction of a shock wave with a high Reynolds number turbulent boundary layer. Since the near wall region is modeled, high Reynolds number turbulent flows can be simulated at a moderate computational cost. The case considered is that of an axisymmetric Mach 2.85 turbulent boundary layer over a 30 compression corner. The Reynolds number of the boundary layer upstream of the interaction based on momentum thickness (Re theta = u sub infinity theta/v sub infinity) is ~12,000. The geometry and flow conditions match the experiments of Dunagan et al. (NASA TM 88227, 1986). The simulations were performed using equilibrium and non-equilibrium wall models. The agreement with experiment is encouraging for the finest grid with respect to the separation bubble length, unsteady shock structure and wall pressure distribution. Sensitivity ofWMLES results to grid, wall model, and blockage effects in the tunnel are reported

    Computational study of a complex three-dimensional shock boundary-layer interaction

    Get PDF
    Shock boundary–layer interactions occur in many high-speed aerodynamic flows and they can have a notable impact on design considerations due to the aerodynamic and heat transfer effects. Consequently there is a notable interest in understanding the ability of computational tools to calculate the complex flow fields that can arise in a range of engineering applications. Three-dimensional complex shock boundary layer interaction studies are expensive in both time and computational resources. Although recent studies have begun to focus on the use of more complex computational methods such as large eddy simulations, the aim of this research is to assess the ability of steady Reynolds averaged Navier Stokes turbulence models to simulate the interaction of a planar shock impinging on a cylindrical body under supersonic conditions and to determine if these models have a role to play in engineering design applications. The performance of both eddy viscosity and Reynolds stress models are evaluated relative to an established experimental test case. The impact of Reynolds number and impinging shock strength are also considered. Of the eddy viscosity models it was shown that the Spalart-Allmaras model is unsuitable for this complex interaction and that the k- and Reynolds stress methods both gave notably better agreement with the measured surface static pressures. Overall it was considered that the Reynolds stress method was the best model as it also provided better agreement with the measured surface flow topology. It was concluded that, although a steady Reynolds averaged Navier Stokes approach has known limitations for this type of complex interaction, within an engineering context it can also provide useful results when applied appropriately

    Full Navier-Stokes analysis of a two-dimensional mixer/ejector nozzle for noise suppression

    Get PDF
    A three-dimensional full Navier-Stokes (FNS) analysis was performed on a mixer/ejector nozzle designed to reduce the jet noise created at takeoff by a future supersonic transport. The PARC3D computational fluid dynamics (CFD) code was used to study the flow field of the nozzle. The grid that was used in the analysis consisted of approximately 900,000 node points contained in eight grid blocks. Two nozzle configurations were studied: a constant area mixing section and a diverging mixing section. Data are presented for predictions of pressure, velocity, and total temperature distributions and for evaluations of internal performance and mixing effectiveness. The analysis provided good insight into the behavior of the flow

    The structure of the ternary Eg5–ADP–ispinesib complex

    Get PDF
    The human kinesin Eg5 is responsible for bipolar spindle formation during early mitosis. Inhibition of Eg5 triggers the formation of monoastral spindles, leading to mitotic arrest that eventually causes apoptosis. There is increasing evidence that Eg5 constitutes a potential drug target for the development of cancer chemotherapeutics. The most advanced Eg5-targeting agent is ispinesib, which exhibits potent antitumour activity and is currently in multiple phase II clinical trials. In this study, the crystal structure of the Eg5 motor domain in complex with ispinesib, supported by kinetic and thermodynamic binding data, is reported. Ispinesib occupies the same induced-fit pocket in Eg5 as other allosteric inhibitors, making extensive hydrophobic interactions with the protein. The data for the Eg5-ADP-ispinesib complex suffered from pseudo-merohedral twinning and revealed translational noncrystallographic symmetry, leading to challenges in data processing, space-group assignment and structure solution as well as in refinement. These complications may explain the lack of available structural information for this important agent and its analogues. The present structure represents the best interpretation of these data based on extensive data-reduction, structure-solution and refinement trials

    Rocket engine diagnostics using qualitative modeling techniques

    Get PDF
    Researchers at NASA Lewis Research Center are presently developing qualitative modeling techniques for automated rocket engine diagnostics. A qualitative model of a turbopump interpropellant seal system was created. The qualitative model describes the effects of seal failures on the system steady state behavior. This model is able to diagnose the failure of particular seals in the system based on anomalous temperature and pressure values. The anomalous values input to the qualitative model are generated using numerical simulations. Diagnostic test cases include both single and multiple seal failures

    Experimental and analytical studies of flow through a ventral and axial exhaust nozzle system for STOVL aircraft

    Get PDF
    Flow through a combined ventral and axial exhaust nozzle system was studied experimentally and analytically. The work is part of an ongoing propulsion technology effort at NASA Lewis Research Center for short takeoff, vertical landing (STOVL) aircraft. The experimental investigation was done on the NASA Lewis Powered Lift Facility. The experiment consisted of performance testing over a range of tailpipe pressure ratios from 1 to 3.2 and flow visualization. The analytical investigation consisted of modeling the same configuration and solving for the flow using the PARC3D computational fluid dynamics program. The comparison of experimental and analytical results was very good. The ventral nozzle performance coefficients obtained from both the experimental and analytical studies agreed within 1.2 percent. The net horizontal thrust of the nozzle system contained a significant reverse thrust component created by the flow overturning in the ventral duct. This component resulted in a low net horizontal thrust coefficient. The experimental and analytical studies showed very good agreement in the internal flow patterns

    Improved Combinatorial Group Testing Algorithms for Real-World Problem Sizes

    Full text link
    We study practically efficient methods for performing combinatorial group testing. We present efficient non-adaptive and two-stage combinatorial group testing algorithms, which identify the at most d items out of a given set of n items that are defective, using fewer tests for all practical set sizes. For example, our two-stage algorithm matches the information theoretic lower bound for the number of tests in a combinatorial group testing regimen.Comment: 18 pages; an abbreviated version of this paper is to appear at the 9th Worksh. Algorithms and Data Structure

    Dual pathway spindle assembly increases both the speed and the fidelity of mitosis

    Get PDF
    Roughly half of all animal somatic cell spindles assemble by the classical prophase pathway, in which the centrosomes separate ahead of nuclear envelope breakdown (NEBD). The remainder assemble by the prometaphase pathway, in which the centrosomes separate following NEBD. Why cells use dual pathway spindle assembly is unclear. Here, by examining the timing of NEBD relative to the onset of Eg5-mEGFP loading to centrosomes, we show that a time window of 9.2 ± 2.9 min is available for Eg5-driven prophase centrosome separation ahead of NEBD, and that those cells that succeed in separating their centrosomes within this window subsequently show .3-fold fewer chromosome segregation errors and a somewhat faster mitosis. A longer time window would allow more cells to complete prophase centrosome separation and further reduce segregation errors, but at the expense of a slower mitosis. Our data reveal dual pathway mitosis in a new light, as a substantive strategy that increases both the speed and the fidelity of mitosis

    Reading materials for junior high school, contributions to American life made by members of minority groups

    Full text link
    Thesis (Ed.M.)--Boston University, 1948. This item was digitized by the Internet Archive

    Navier-Stokes analysis and experimental data comparison of compressible flow in a diffusing S-duct

    Get PDF
    Full three-dimensional Navier-Stokes computational results are compared with new experimental measurements for the flowfield within a round diffusing S-duct. The present study extends previous computational and experimental results for a similar smaller scale S-duct. Predicted results are compared with the experimental static and total pressure fields, and velocity vectors. Additionally, wall pressures, velocity profiles in wall coordinates, and skin friction values are presented. The CFD results employ algebraic and k-epsilon turbulence models. The CFD computed and experimentally determined separated flowfield is carefully examined
    corecore