40 research outputs found

    Doublecortin-like expressing astrocytes of the suprachiasmatic nucleus are implicated in the biosynthesis of vasopressin and influences circadian rhythms

    Get PDF
    We have recently identified a novel plasticity protein, doublecortin-like (DCL), that is specifically expressed in the shell of the mouse suprachiasmatic nucleus (SCN). DCL is implicated in neuroplastic events, such as neurogenesis, that require structural rearrangements of the microtubule cytoskeleton, enabling dynamic movements of cell bodies and dendrites. We have inspected DCL expression in the SCN by confocal microscopy and found that DCL is expressed in GABA transporter-3 (GAT3)-positive astrocytes that envelope arginine vasopressin (AVP)-expressing cells. To investigate the role of these DCL-positive astrocytes in circadian rhythmicity, we have used transgenic mice expressing doxycycline-induced short-hairpin (sh) RNA's targeting DCL mRNA (DCL knockdown mice). Compared with littermate wild type (WT) controls, DCL-knockdown mice exhibit significant shorter circadian rest-activity periods in constant darkness and adjusted significantly faster to a jet-lag protocol. As DCL-positive astrocytes are closely associated with AVP-positive cells, we analyzed AVP expression in DCL-knockdown mice and in their WT littermates by 3D reconstructions and transmission electron microscopy (TEM). We found significantly higher numbers of AVP-positive cells with increased volume and more intensity in DCL-knockdown mice. We found alterations in the numbers of dense core vesicle-containing neurons at ZT8 and ZT20 suggesting that the peak and trough of neuropeptide biosynthesis is dampened in DCL-knockdown mice compared to WT littermates. Together, our data suggest an important role for the astrocytic plasticity in the regulation of circadian rhythms and point to the existence of a specific DCL+ astrocyte-AVP(+) neuronal network located in the dorsal SCN implicated in AVP biosynthesis.Microscopic imaging and technolog

    Data-driven agriculture and sustainable farming: friends or foes?

    Get PDF
    Sustainability in our food and fiber agriculture systems is inherently knowledge intensive. It is more likely to be achieved by using all the knowledge, technology, and resources available, including data-driven agricultural technology and precision agriculture methods, than by relying entirely on human powers of observation, analysis, and memory following practical experience. Data collected by sensors and digested by artificial intelligence (AI) can help farmers learn about synergies between the domains of natural systems that are key to simultaneously achieve sustainability and food security. In the quest for agricultural sustainability, some high-payoff research areas are suggested to resolve critical legal and technical barriers as well as economic and social constraints. These include: the development of holistic decision-making systems, automated animal intake measurement, low-cost environmental sensors, robot obstacle avoidance, integrating remote sensing with crop and pasture models, extension methods for data-driven agriculture, methods for exploiting naturally occurring Genotype x Environment x Management experiments, innovation in business models for data sharing and data regulation reinforcing trust. Public funding for research is needed in several critical areas identified in this paper to enable sustainable agriculture and innovation

    Evaluation of the implementation of the R-matrix formalism with reference to the astrophysically important 18F(p,α)15O reaction

    No full text
    Background. The R-Matrix formalism is a crucial tool in the study of nuclear astrophysics reactions, and many codes have been written to implement the relevant mathematics. One such code makes use of Visual Basic macros. A further open-source code, AZURE, written in the FORTRAN programming language is available from the JINA collaboration and a C++ version, AZURE2, has recently become available. Purpose. The detailed mathematics and extensive programming required to implement broadly applicable R-Matrix codes make comparisons between different codes highly desirable in order to check for errors. This paper presents a comparison of the three codes based around data and recent results of the astrophysically important 18F(p,α)15O reaction. Methods. Using the same analysis techniques as in the work of Mountford et al. parameters are extracted from the two JINA codes, and the resulting cross-sections are compared. This includes both refitting data with each code and making low-energy extrapolations. Results. All extracted parameters are shown to be broadly consistent between the three codes and the resulting calculations are in good agreement barring a known low-energy problem in the original AZURE code. Conclusion. The three codes are shown to be broadly consistent with each other and equally valid in the study of astrophysical reactions, although one must be careful when considering low lying, narrow resonances which can be problematic when integrating.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    LRGUK1 is part of a multiprotein complex required for manchette function and male fertility

    No full text
    Infertility occurs in 1 in 20 young men and is idiopathic in origin in most. We have reported that the leucine-rich repeat (LRR) and guanylate kinase-like domain containing, isoform (LRGUK)-1 is essential for sperm head shaping, via the manchette, and the initiation of sperm tail growth from the centriole/basal body, and thus, male fertility. Within this study we have used a yeast 2-hybrid screen of an adult testis library to identify LRGUK1-binding partners, which were then validated with a range of techniques. The data indicate that LRGUK1 likely achieves its function in partnership with members of the HOOK family of proteins (HOOK-1-3), Rab3-interacting molecule binding protein (RIMBP)-3 and kinesin light chain (KLC)-3, all of which are associated with intracellular protein transport as cargo adaptor proteins and are localized to the manchette. LRGUK1 consists of 3 domains; an LRR, a guanylate kinase (GUK)-like and an unnamed domain. In the present study, we showed that the GUK-like domain is essential for binding to HOOK2 and RIMBP3, and the LRR domain is essential for binding to KLC3. These findings establish LRGUK1 as a key component of a multiprotein complex with an essential role in microtubule dynamics within haploid male germ cells.Hidenobu Okuda, Kathleen DeBoer, Anne E. O’Connor, D. Jo Merriner, Duangporn Jamsai, and Moira K. O’Brya
    corecore