25 research outputs found

    Mutational Analysis of HIV-1 gp160-Mediated Receptor Interference: Intracellular Complex Formation

    Get PDF
    AbstractFormation of CD4–gp160 intracellular complexes represents an important mechanism leading to the induction of receptor interference. Previous studies have demonstrated that cells coexpressing gp160 and CD4 formed complexes of CD4 and gp160 which became blocked within the endoplasmic reticulum (ER), preventing CD4 from reaching the cell surface. In this report we have investigated the domains and residues of CD4 and gp160 involved in intracellular interaction. Accordingly, we have introduced mutations in both CD4 and gp160 at sites previously shown to disrupt CD4–gp120 interactions at the cell surface. Using a T7-vaccinia virus transient expression system, we expressed these gp160 and CD4 mutants in HeLa cells and analyzed their effects on intracellular complex formation and CD4 surface modulation. We observed that a number of gp160 mutants which failed to interact with CD4 at the cell surface also failed to bind and trap CD4 within the ER as expected. However, mutations at a critical residue, W427, did not abrogate intracellular CD4 binding. These gp160 mutants continued to interact with intracellular CD4 and inhibit CD4 transport to the cell surface, although gp120 produced from these mutants did not bind CD4 at the cell surface as expected. A number CD4 mutants also continued to form intracellular complexes with gp160, resulting in the loss of CD4 surface expression. Again, these CD4 mutants did not bind to gp120 at the cell surface, consistent with earlier reports. These results demonstrate that intracellular interactions between gp160 and CD4 in the ER may utilize different contact sites compared to those used during CD4 and gp120 binding at the cell surface. The data provide further evidence that the environment in which CD4 and the HIV-1 envelope glycoprotein interact can have a significant effect on their interaction

    Influenza virus morphogenesis and budding.

    Get PDF
    Influenza viruses are enveloped, negative stranded, segmented RNA viruses belonging to Orthomyxoviridae family. Each virion consists of three major sub-viral components, namely (i) a viral envelope decorated with three transmembrane proteins hemagglutinin (HA), neuraminidase (NA) and M2, (ii) an intermediate layer of matrix protein (M1), and (iii) an innermost helical viral ribonucleocapsid [vRNP] core formed by nucleoprotein (NP) and negative strand viral RNA (vRNA). Since complete virus particles are not found inside the cell, the processes of assembly, morphogenesis, budding and release of progeny virus particles at the plasma membrane of the infected cells are critically important for the production of infectious virions and pathogenesis of influenza viruses as well. Morphogenesis and budding require that all virus components must be brought to the budding site which is the apical plasma membrane in polarized epithelial cells whether in vitro cultured cells or in vivo infected animals. HA and NA forming the outer spikes on the viral envelope possess apical sorting signals and use exocytic pathways and lipid rafts for cell surface transport and apical sorting. NP also has apical determinant(s) and is probably transported to the apical budding site similarly via lipid rafts and/or through cortical actin microfilaments. M1 binds the NP and the exposed RNAs of vRNPs, as well as to the cytoplasmic tails (CT) and transmembrane (TM) domains of HA, NA and M2, and is likely brought to the budding site on the piggy-back of vRNP and transmembrane proteins. Budding processes involve bud initiation, bud growth and bud release. The presence of lipid rafts and assembly of viral components at the budding site can cause asymmetry of lipid bilayers and outward membrane bending leading to bud initiation and bud growth. Bud release requires fusion of the apposing viral and cellular membranes and scission of the virus buds from the infected cellular membrane. The processes involved in bud initiation, bud growth and bud scission/release require involvement both viral and host components and can affect bud closing and virus release in both positive and negative ways. Among the viral components, M1, M2 and NA play important roles in bud release and M1, M2 and NA mutations all affect the morphology of buds and released viruses. Disassembly of host cortical actin microfilaments at the pinching-off site appears to facilitate bud fission and release. Bud scission is energy dependent and only a small fraction of virus buds present on the cell surface is released. Discontinuity of M1 layer underneath the lipid bilayer, absence of outer membrane spikes, absence of lipid rafts in the lipid bilayer, as well as possible presence of M2 and disassembly of cortical actin microfilaments at the pinching-off site appear to facilitate bud fission and bud release. We provide our current understanding of these important processes leading to the production of infectious influenza virus particles

    Formation of Influenza Virus Particles Lacking Hemagglutinin on the Viral Envelope

    Get PDF
    We investigated the intraceUular block in the transport of hemagglutinin (HA) and the role of HA in virus particle formation by using temperature-sensitive (Is) mutants (1s134 and 1s61S) of inOuenza virus AlWSN/33. We found that at the nonpermissive temperature (39.5°C), the exit of ts HA from the rough endoplasmic reticulum to the Golgi complex was blocked and that no additional block was apparent in either the exit from the Golgi complex or post-Golgi complex transport. When MDBK ceUs were infected with these mutant viruses, they produced noninfectious virus particles at 39.5°C. The efficiency of particle formation at 39.5°C was essentiaUy the same for both wild-type (wt) and Is virus-infected cells. When compared with the wt virus produced at either 33 or 39.5°C or the ts virus formed at 33°C, these noninfectious virus particles were lighter in density and lacked spikes on the envelope. However, they contained the full complement of genomic RNA as well as aU of the structural polypeptides of inOuenza virus with the exception of HA. In these spikeless particles, HA could not be detected at the limit of 0.2% of the HA present in wt virions. In contrast, neuraminidase appeared to be present in a twofold excess over the amount present in Is virus formed at 33°C. These observations suggest that the presence of HA is not an obligatory requirement for the assembly and budding of inftuenza virus particles from infected ceUs. The implications of these results and the possible role of other viral proteins in inOuenza virus morphogenesis are discussed

    Lipid Raft Disruption by Cholesterol Depletion Enhances Influenza A Virus Budding from MDCK Cellsâ–¿

    No full text
    Lipid rafts play critical roles in many aspects of the influenza A virus life cycle. Cholesterol is a critical structural component of lipid rafts, and depletion of cholesterol leads to disorganization of lipid raft microdomains. In this study, we have investigated the effect of cholesterol depletion by methyl-β-cyclodextrin (MβCD) treatment on influenza virus budding. When virus-infected Madin-Darby canine kidney cells were treated with MβCD at the late phase of infection for a short duration, budding of virus particles, as determined by protein analysis and electron microscopy, increased with increasing concentrations and lengths of treatment. However, infectious virus yield varied, depending on the concentration and duration of MβCD treatment. Low concentrations of MβCD increased infectious virus yield throughout the treatment period, but higher concentrations caused an initial increase of infectious virus titer followed by a decrease with a longer duration. Relative infectivity of the released virus particles, on the other hand, decreased with increasing concentrations and durations of MβCD treatment. Loss of infectivity of virus particles is due to multiple effects of MβCD-mediated cholesterol depletion causing disruption of lipid rafts, changes in structural integrity of the viral membrane, leakage of viral proteins, a nick or hole on the viral envelope, and disruption of the virus structure. Exogenous cholesterol increased lipid raft integrity, inhibited particle release, and partially restored the infectivity of the released virus particles. These data show that disruption of lipid rafts by cholesterol depletion caused an enhancement of virus particle release from infected cells and a decrease in the infectivity of virus particles
    corecore