61 research outputs found

    Cool Customers in the Stellar Graveyard IV: Spitzer Search for Mid-IR excesses Around Five DAs

    Full text link
    Hydrogen atmosphere white dwarfs with metal lines, so-called DAZs, require external accretion of material to explain the presence of weak metal line absorption in their photospheres. The source of this material is currently unknown, but could come from the interstellar medium, unseen companions, or relic planetesimals from asteroid belt or Kuiper belt analogues. Accurate mid-infrared photometry of these white dwarfs provide additional information to solve the mystery of this accretion and to look for evidence of planetary systems that have survived post main sequence evolution. We present {\em Spitzer} IRAC photometry accurate to \sim3% for four DAZs and one DA with circumstellar absorption lines in the UV. We search for excesses due to unseen companions or circumstellar dust disks. We use {\em Hubble Space Telescope} NICMOS imaging of these white dwarfs to gauge the level of background contamination to our targets as well as rule out common proper motion companions to WD 1620-391. All of our targets show no excesses due to companions >>20 MJ_{J}, ruling out all but very low mass companions to these white dwarfs at all separations. No excesses due to circumstellar disks are observed, and we place limits on what types of disks may still be present.Comment: 18 pages, 8 figures, Accepted to A

    First High Contrast Imaging Using a Gaussian Aperture Pupil Mask

    Full text link
    Placing a pupil mask with a gaussian aperture into the optical train of current telescopes represents a way to attain high contrast imaging that potentially improves contrast by orders of magnitude compared to current techniques. We present here the first observations ever using a gaussian aperture pupil mask (GAPM) on the Penn State near-IR Imager and Spectrograph (PIRIS) at the Mt. Wilson 100^{\prime\prime} telescope. Two nearby stars were observed, ϵ\epsilon Eridani and μ\mu Her A. A faint companion was detected around μ\mu Her A, confirming it as a proper motion companion. Furthermore, the observed H and K magnitudes of the companion were used to constrain its nature. No companions or faint structure were observed for ϵ\epsilon Eridani. We found that our observations with the GAPM achieved contrast levels similar to our coronographic images, without blocking light from the central star. The mask's performance also nearly reached sensitivities reported for other ground based adaptive optics coronographs and deep HST images, but did not reach theoretically predicted contrast levels. We outline ways that could improve the performance of the GAPM by an order of magnitude or more.Comment: 8 pages, 4 figures, accepted by ApJ letter

    Shallow Ultraviolet Transits of WD 1145+017

    Full text link
    WD 1145+017 is a unique white dwarf system that has a heavily polluted atmosphere, an infrared excess from a dust disk, numerous broad absorption lines from circumstellar gas, and changing transit features, likely from fragments of an actively disintegrating asteroid. Here, we present results from a large photometric and spectroscopic campaign with Hubble, Keck , VLT, Spitzer, and many other smaller telescopes from 2015 to 2018. Somewhat surprisingly, but consistent with previous observations in the u' band, the UV transit depths are always shallower than those in the optical. We develop a model that can quantitatively explain the observed "bluing" and the main findings are: I. the transiting objects, circumstellar gas, and white dwarf are all aligned along our line of sight; II. the transiting object is blocking a larger fraction of the circumstellar gas than of the white dwarf itself. Because most circumstellar lines are concentrated in the UV, the UV flux appears to be less blocked compared to the optical during a transit, leading to a shallower UV transit. This scenario is further supported by the strong anti-correlation between optical transit depth and circumstellar line strength. We have yet to detect any wavelength-dependent transits caused by the transiting material around WD 1145+017.Comment: 16 pages, 11 figures, 6 tables, ApJ, in pres

    Disk Detective: Discovery of New Circumstellar Disk Candidates through Citizen Science

    Get PDF
    The Disk Detective citizen science project aims to find new stars with 22 micron excess emission from circumstellar dust using data from NASA's WISE mission. Initial cuts on the AllWISE catalog provide an input catalog of 277,686 sources. Volunteers then view images of each source online in 10 different bands to identify false-positives (galaxies, background stars, interstellar matter, image artifacts, etc.). Sources that survive this online vetting are followed up with spectroscopy on the FLWO Tillinghast telescope. This approach should allow us to unleash the full potential of WISE for finding new debris disks and protoplanetary disks. We announce a first list of 37 new disk candidates discovered by the project, and we describe our vetting and follow-up process. One of these systems appears to contain the first debris disk discovered around a star with a white dwarf companion: HD 74389. We also report four newly discovered classical Be stars (HD 6612, HD 7406, HD 164137, and HD 218546) and a new detection of 22 micron excess around a previously known debris disk host star, HD 22128.Comment: 50 pages, accepted for publication in the Astrophysical Journa

    Accretion of Planetary Material onto Host Stars

    Full text link
    Accretion of planetary material onto host stars may occur throughout a star's life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars' main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star's life, during which the details of accretion vary, and the observational evidence for accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie

    Eff ectiveness of one dose of oral cholera vaccine in response to an outbreak: a case-cohort study

    Get PDF
    Background Oral cholera vaccines represent a new eff ective tool to fi ght cholera and are licensed as two-dose regimens with 2–4 weeks between doses. Evidence from previous studies suggests that a single dose of oral cholera vaccine might provide substantial direct protection against cholera. During a cholera outbreak in May, 2015, in Juba, South Sudan, the Ministry of Health, Médecins Sans Frontières, and partners engaged in the fi rst fi eld deployment of a single dose of oral cholera vaccine to enhance the outbreak response. We did a vaccine eff ectiveness study in conjunction with this large public health intervention. Methods We did a case-cohort study, combining information on the vaccination status and disease outcomes from a random cohort recruited from throughout the city of Juba with that from all the cases detected. Eligible cases were those aged 1 year or older on the fi rst day of the vaccination campaign who sought care for diarrhoea at all three cholera treatment centres and seven rehydration posts throughout Juba. Confi rmed cases were suspected cases who tested positive to PCR for Vibrio cholerae O1. We estimated the short-term protection (direct and indirect) conferred by one dose of cholera vaccine (Shanchol, Shantha Biotechnics, Hyderabad, India). Findings Between Aug 9, 2015, and Sept 29, 2015, we enrolled 87 individuals with suspected cholera, and an 898-person cohort from throughout Juba. Of the 87 individuals with suspected cholera, 34 were classifi ed as cholera positive, 52 as cholera negative, and one had indeterminate results. Of the 858 cohort members who completed a follow-up visit, none developed clinical cholera during follow-up. The unadjusted single-dose vaccine eff ectiveness was 80·2% (95% CI 61·5–100·0) and after adjusting for potential confounders was 87·3% (70·2–100·0). Interpretation One dose of Shanchol was eff ective in preventing medically attended cholera in this study. These results support the use of a single-dose strategy in outbreaks in similar epidemiological settings

    Spitzer Follow-up of Extremely Cold Brown Dwarfs Discovered by the Backyard Worlds: Planet 9 Citizen Science Project

    Get PDF
    We present Spitzer follow-up imaging of 95 candidate extremely cold brown dwarfs discovered by the Backyard Worlds: Planet 9 citizen science project, which uses visually perceived motion in multiepoch Wide-field Infrared Survey Explorer (WISE) images to identify previously unrecognized substellar neighbors to the Sun. We measure Spitzer [3.6]–[4.5] color to phototype our brown dwarf candidates, with an emphasis on pinpointing the coldest and closest Y dwarfs within our sample. The combination of WISE and Spitzer astrometry provides quantitative confirmation of the transverse motion of 75 of our discoveries. Nine of our motion-confirmed objects have best-fit linear motions larger than 1'' yr⁻¹; our fastest-moving discovery is WISEA J155349.96+693355.2 (μ ≈ 2.”15 yr⁻¹), a possible T-type subdwarf. We also report a newly discovered wide-separation (~400 au) T8 comoving companion to the white dwarf LSPM J0055+5948 (the fourth such system to be found), plus a candidate late T companion to the white dwarf LSR J0002+6357 at 5 5 projected separation (~8700 au if associated). Among our motion-confirmed targets, five have Spitzer colors most consistent with spectral type Y. Four of these five have exceptionally red Spitzer colors suggesting types of Y1 or later, adding considerably to the small sample of known objects in this especially valuable low-temperature regime. Our Y dwarf candidates begin bridging the gap between the bulk of the Y dwarf population and the coldest known brown dwarf

    An Exo-Kuiper Belt with an Extended Halo around HD 191089 in Scattered Light

    Get PDF
    We have obtained Hubble Space Telescope STIS and NICMOS and Gemini/GPI scattered-light images of the HD 191089 debris disk. We identify two spatial components: a ring resembling the Kuiper Belt in radial extent (FWHM ∼ 25 au, centered at ∼46 au) and a halo extending to ∼640 au. We find that the halo is significantly bluer than the ring, consistent with the scenario that the ring serves as the birth ring for the smaller dust in the halo. We measure the scattering phase functions in the 30°-150° scattering-angle range and find that the halo dust is more forward- and backward-scattering than the ring dust. We measure a surface density power-law index of -0.68 ± 0.04 for the halo, which indicates the slowdown of the radial outward motion of the dust. Using radiative transfer modeling, we attempt to simultaneously reproduce the (visible) total and (near-infrared) polarized intensity images of the birth ring. Our modeling leads to mutually inconsistent results, indicating that more complex models, such as the inclusion of more realistic aggregate particles, are needed

    Spitzer Follow-up of Extremely Cold Brown Dwarfs Discovered by the Backyard Worlds: Planet 9 Citizen Science Project

    Get PDF
    We present Spitzer follow-up imaging of 95 candidate extremely cold brown dwarfs discovered by the Backyard Worlds: Planet 9 citizen science project, which uses visually perceived motion in multi-epoch WISE images to identify previously unrecognized substellar neighbors to the Sun. We measure Spitzer [3.6]-[4.5] color to phototype our brown dwarf candidates, with an emphasis on pinpointing the coldest and closest Y dwarfs within our sample. The combination of WISE and Spitzer astrometry provides quantitative confirmation of the transverse motion of 75 of our discoveries. Nine of our motion-confirmed objects have best-fit linear motions larger than 1"/yr; our fastest-moving discovery is WISEA J155349.96+693355.2 (total motion ~2.15"/yr), a possible T type subdwarf. We also report a newly discovered wide-separation (~400 AU) T8 comoving companion to the white dwarf LSPM J0055+5948 (the fourth such system to be found), plus a candidate late T companion to the white dwarf LSR J0002+6357 at 5.5' projected separation (~8,700 AU if associated). Among our motion-confirmed targets, five have Spitzer colors most consistent with spectral type Y. Four of these five have exceptionally red Spitzer colors suggesting types of Y1 or later, adding considerably to the small sample of known objects in this especially valuable low-temperature regime. Our Y dwarf candidates begin bridging the gap between the bulk of the Y dwarf population and the coldest known brown dwarf.Comment: accepted for publication in The Astrophysical Journa
    corecore