22 research outputs found

    Secondary structure in the core of amyloid fibrils formed from human βm and its truncated variant Δn6

    Get PDF
    Amyloid fibrils formed from initially soluble proteins with diverse sequences are associated with an array of human diseases. In the human disorder, dialysis-related amyloidosis (DRA), fibrils contain two major constituents, full-length human β-microglobulin (hβm) and a truncation variant, ΔN6 which lacks the N-terminal six amino acids. These fibrils are assembled from initially natively folded proteins with an all antiparallel β-stranded structure. Here, backbone conformations of wild-type hβm and ΔN6 in their amyloid forms have been determined using a combination of dilute isotopic labeling strategies and multidimensional magic angle spinning (MAS) NMR techniques at high magnetic fields, providing valuable structural information at the atomic-level about the fibril architecture. The secondary structures of both fibril types, determined by the assignment of ∼80% of the backbone resonances of these 100- and 94-residue proteins, respectively, reveal substantial backbone rearrangement compared with the location of β-strands in their native immunoglobulin folds. The identification of seven β-strands in hβm fibrils indicates that approximately 70 residues are in a β-strand conformation in the fibril core. By contrast, nine β-strands comprise the fibrils formed from ΔN6, indicating a more extensive core. The precise location and length of β-strands in the two fibril forms also differ. The results indicate fibrils of ΔN6 and hβm have an extensive core architecture involving the majority of residues in the polypeptide sequence. The common elements of the backbone structure of the two proteins likely facilitates their ability to copolymerize during amyloid fibril assembly

    Fused Split Inteins: Tools for Introducing Multiple Protein Modifications

    No full text
    The split inteins from the DnaE cyanobacterial family are efficient and versatile tools for protein engineering and chemical biology applications. Their ultrafast splicing kinetics allow for the efficient production of native proteins from two separate polypeptides both in vitro and in cells. They can also be used to generate proteins with C-terminal thioesters for downstream applications. In this chapter, we describe a method based on a genetically fused version of the DnaE intein Npu for the preparation of doubly modified proteins through recombinant expression. In particular, we provide protocols for the recombinant production of modified ubiquitin through amber suppression where fused Npu is used (1) as a traceless purification tag or (2) as a protein engineering tool to introduce C-terminal modifications for subsequent attachment to other proteins of interest. Our purification protocol allows for quick and facile separation of truncated products and eliminates the need for engineering protease cleavage sites. Our approach can be easily adapted to different proteins and applications where the simultaneous presence of internal and C-terminal modifications is desirable
    corecore