27 research outputs found

    An Improved Multi-objective Algorithm for the Urban Transit Routing Problem

    Get PDF
    The determination of efficient routes and schedules in public transport systems is complex due to the vast search space and multi- ple constraints involved. In this paper we focus on the Urban Transit Routing Problem concerned with the physical network design of pub- lic transport systems. Historically, route planners have used their local knowledge coupled with simple guidelines to produce network designs. Several major studies have identified the need for automated tools to aid in the design and evaluation of public transport networks. We propose a new construction heuristic used to seed a multi-objective evolutionary al- gorithm. Several problem specific mutation operators are then combined with an NSGAII framework leading to improvements upon previously published results

    Issues and Challenges in Orbital-free Density Functional Calculations

    Full text link
    Solving the Euler equation which corresponds to the energy minimum of a density functional expressed in orbital-free form involves related but distinct computational challenges. One is the choice between all-electron and pseudo-potential calculations and, if the latter, construction of the pseudo-potential. Another is the stability, speed, and accuracy of solution algorithms. Underlying both is the fundamental issue of satisfactory quality of the approximate functionals (kinetic energy and exchange-correlation). We address both computational issues and illustrate them by some comparative performance testing of our recently developed modified-conjoint generalized gradient approximation kinetic energy functionals. Comparisons are given for atoms, diatomic molecules, and some simple solids.Comment: submitted to Computer Physics Communication

    Statistical strategies for avoiding false discoveries in metabolomics and related experiments

    Full text link

    A case-only study to identify genetic modifiers of breast cancer risk for BRCA1/BRCA2 mutation carriers

    Get PDF
    Breast cancer (BC) risk for BRCA1 and BRCA2 mutation carriers varies by genetic and familial factors. About 50 common variants have been shown to modify BC risk for mutation carriers. All but three, were identified in general population studies. Other mutation carrier-specific susceptibility variants may exist but studies of mutation carriers have so far been underpowered. We conduct a novel case-only genome-wide association study comparing genotype frequencies between 60,212 general population BC cases and 13,007 cases with BRCA1 or BRCA2 mutations. We identify robust novel associations for 2 variants with BC for BRCA1 and 3 for BRCA2 mutation carriers, P < 10−8, at 5 loci, which are not associated with risk in the general population. They include rs60882887 at 11p11.2 where MADD, SP11 and EIF1, genes previously implicated in BC biology, are predicted as potential targets. These findings will contribute towards customising BC polygenic risk scores for BRCA1 and BRCA2 mutation carriers

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl

    Not Available

    No full text
    Not AvailableNot AvailableNot Availabl
    corecore