443 research outputs found

    Modified Bloch equations in presence of a nonstationary bath

    Get PDF
    Based on the system-reservoir description we propose a simple solvable microscopic model for a nonequilibrium bath. This captures the essential features of a nonstationary quantum Markov process. We establish an appropriate generalization of the fluctuation-dissipation relation pertaining to this process and explore the essential modifications of the Bloch equations to reveal the nonexponential decay of the Bloch vector components and transient spectral broadening in resonance fluorescence. We discuss a simple experimental scheme to verify the theoretical results.Comment: Revtex, 27 pages, 2 ps figures. To appear in European Physical Journal

    ATLAS IBL Pixel Upgrade

    Full text link
    The upgrade for ATLAS detector will undergo different phase towards super-LHC. The first upgrade for the Pixel detector will consist of the construction of a new pixel layer which will be installed during the first shutdown of the LHC machine (LHC phase-I upgrade). The new detector, called Insertable B-Layer (IBL), will be inserted between the existing pixel detector and a new (smaller radius) beam-pipe at a radius of 3.3 cm. The IBL will require the development of several new technologies to cope with increase of radiation or pixel occupancy and also to improve the physics performance which will be achieved by reducing the pixel size and of the material budget. Three different promising sensor technologies (planar-Si, 3D-Si and diamond) are currently under investigation for the pixel detector. An overview of the project with particular emphasis on pixel module is presented in this paper.Comment: 3 pages, 3 figures, presented at the 12th Topical Seminar on Innovative Particle and Radiation Detectors (IPRD10) 7 - 10 June 2010, Siena (IT). Accepted by Nuclear Physics B (Proceedings Supplements) (2011

    Adiabatic noise-induced escape rate for nonequilibrium open systems

    Full text link
    We consider the motion of an overdamped particle in a force field in presence of an external, adiabatic noise, without the restriction that the noise process is Gaussian or the stochastic process is Markovian. We examine the condition for attainment of steady state for this nonequilibrium open system and calculate the adiabatic noise-induced rate of escape of the particle over a barrier.Comment: 6 pages, 3 figure

    On cross-domain social semantic learning

    Get PDF
    Approximately 2.4 billion people are now connected to the Internet, generating massive amounts of data through laptops, mobile phones, sensors and other electronic devices or gadgets. Not surprisingly then, ninety percent of the world's digital data was created in the last two years. This massive explosion of data provides tremendous opportunity to study, model and improve conceptual and physical systems from which the data is produced. It also permits scientists to test pre-existing hypotheses in various fields with large scale experimental evidence. Thus, developing computational algorithms that automatically explores this data is the holy grail of the current generation of computer scientists. Making sense of this data algorithmically can be a complex process, specifically due to two reasons. Firstly, the data is generated by different devices, capturing different aspects of information and resides in different web resources/ platforms on the Internet. Therefore, even if two pieces of data bear singular conceptual similarity, their generation, format and domain of existence on the web can make them seem considerably dissimilar. Secondly, since humans are social creatures, the data often possesses inherent but murky correlations, primarily caused by the causal nature of direct or indirect social interactions. This drastically alters what algorithms must now achieve, necessitating intelligent comprehension of the underlying social nature and semantic contexts within the disparate domain data and a quantifiable way of transferring knowledge gained from one domain to another. Finally, the data is often encountered as a stream and not as static pages on the Internet. Therefore, we must learn, and re-learn as the stream propagates. The main objective of this dissertation is to develop learning algorithms that can identify specific patterns in one domain of data which can consequently augment predictive performance in another domain. The research explores existence of specific data domains which can function in synergy with another and more importantly, proposes models to quantify the synergetic information transfer among such domains. We include large-scale data from various domains in our study: social media data from Twitter, multimedia video data from YouTube, video search query data from Bing Videos, Natural Language search queries from the web, Internet resources in form of web logs (blogs) and spatio-temporal social trends from Twitter. Our work presents a series of solutions to address the key challenges in cross-domain learning, particularly in the field of social and semantic data. We propose the concept of bridging media from disparate sources by building a common latent topic space, which represents one of the first attempts toward answering sociological problems using cross-domain (social) media. This allows information transfer between social and non-social domains, fostering real-time socially relevant applications. We also engineer a concept network from the semantic web, called semNet, that can assist in identifying concept relations and modeling information granularity for robust natural language search. Further, by studying spatio-temporal patterns in this data, we can discover categorical concepts that stimulate collective attention within user groups.Includes bibliographical references (pages 210-214)

    Green Accounting: what? Why? Where we are now and where we are heading - A Closer Look

    Get PDF
    Awareness of environmental limits has led to a proliferation of accounting methodologies designed to measure the impact of human activity on the earth's ecological systems and resources. Such methodologies can be collectively described as green accounting, and categorised in three different ways; first, by whose actions are being accounted for; second, by the time period being considered; third, by how environment impacts are measured. Current practice tends to focus on parallel reporting with financial accounting still having greater importance. Green accounting remains largely voluntary and unaudited. The key challenges for green accounting can be summarised as first to determining the scale of change in human activity required to prevent environmental degradation and incorporating some reference to these limits within its metrics, and second to be effective in prompting the necessary behavioral change within the necessary timescale

    Quantum Kramers' equation for energy diffusion and barrier crossing dynamics in the low friction regime

    Get PDF
    Based on a true phase space probability distribution function and an ensemble averaging procedure we have recently developed [Phys. Rev. E 65, 021109 (2002)] a non-Markovian quantum Kramers' equation to derive the quantum rate coefficient for barrier crossing due to thermal activation and tunneling in the intermediate to strong friction regime. We complement and extend this approach to weak friction regime to derive quantum Kramers' equation in energy space and the rate of decay from a metastable well. The theory is valid for arbitrary temperature and noise correlation. We show that depending on the nature of the potential there may be a net reduction of the total quantum rate below its corresponding classical value which is in conformity with earlier observation. The method is independent of path integral approaches and takes care of quantum effects to all orders.Comment: 26 pages, RevTe

    Approach to Quantum Kramers' Equation and Barrier Crossing Dynamics

    Get PDF
    We have presented a simple approach to quantum theory of Brownian motion and barrier crossing dynamics. Based on an initial coherent state representation of bath oscillators and an equilibrium canonical distribution of quantum mechanical mean values of their co-ordinates and momenta we have derived a cc-number generalized quantum Langevin equation. The approach allows us to implement the method of classical non-Markovian Brownian motion to realize an exact generalized non-Markovian quantum Kramers' equation. The equation is valid for arbitrary temperature and friction. We have solved this equation in the spatial diffusion-limited regime to derive quantum Kramers' rate of barrier crossing and analyze its variation as a function of temperature and friction. While almost all the earlier theories rest on quasi-probability distribution functions (like Wigner function) and path integral methods, the present work is based on {\it true probability distribution functions} and is independent of path integral techniques. The theory is a natural extension of the classical theory to quantum domain and provides a unified description of thermal activated processes and tunneling.Comment: RevTex, 18 pages, 2 figures; Minor corrections; To appear in Phys. Rev.
    • …
    corecore