15 research outputs found

    Diamond like carbon coatings for potential application in biological implants – a review

    No full text
    Production of wear debris has been linked to the failure of numerous hip implants. With the current focus on increasing the implant longevity, thus wear and corrosion resistance is important. Hard coatings have the potential to reduce the wear and corrosion. Diamond like Carbon (DLC) coatings exhibit properties that could make them viable for implants. This paper critically reviews previously published research into usage of DLC coatings for implants. Overall DLCs seem to be an effective coating for implants but with the variance in results, further testing is required for clarification of us

    Process mapping of laser surface modification of AISI 316L stainless steel for biomedical applications

    Get PDF
    A 1.5-kW CO2 laser in pulsed mode at 3 kHz was used to investigate the effects of varied laser process parameters and resulting morphology of AISI 316L stainless steel. Irradiance and residence time were varied between 7.9 to 23.6 MW/cm2 and 50 to 167 µs respectively. A strong correlation between irradiance, residence time, depth of processing and roughness of processed steel was established. The high depth of altered microstructure and increased roughness were linked to higher levels of both irradiance and residence times. Energy fluence and surface temperature models were used to predict levels of melting occurring on the surface through the analysis of roughness and depth of the region processed. Microstructural images captured by the SEM revealed significant grain structure changes at higher irradiances, but due to increased residence times, limited to the laser in use, the hardness values were not improved

    Diamond like carbon coatings for potential application in biological implants—a review

    Full text link
    Production of wear debris has been linked to the failure of numerous hip implants. With the current focus on increasing the implant longevity, thus wear and corrosion resistance is important. Hard coatings have the potential to reduce the wear and corrosion. Diamond like Carbon (DLC) coatings exhibit properties that could make them viable for implants. This paper critically reviews previously published research into usage of DLC coatings for implants. Overall DLCs seem to be an effective coating for implants but with the variance in results, further testing is required for clarification of us

    Assessment of CpTi surface properties after nitrogen ion implantation with various dose and energy

    Get PDF
    Nitrogen ion implantation is one of the surface modification techniques used for increasing corrosion resistance of commercially pure titanium (CpTi). The nitrogen ion implanted CpTi in various doses markedly changes the corrosion resistance. Still the effect of nitrogen ion implantation on the CpTi at different energies needs to be verified. This study uses different methods to assess the CpTi surface properties after nitrogen ion implantation in various doses and energy. Surface hardness of the CpTi increases with an increase of the dose and decreases with an increase of the energy. The precipitation of the TiN increases with an increase of the nitrogen dose, and no formation of the Ti2N phase clearly appears. Corrosion resistance of the CpTi specimens can be upgraded to some extent after their surfaces are modified, implanting nitrogen ions at 100 keV by increasing dose. The optimum surface properties of the implanted CpTi are analyzed to contribute to materials science technology
    corecore