36 research outputs found

    Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using Massively Parallel Signature Sequencing

    Get PDF
    BACKGROUND: Dinoflagellates are one of the most important classes of marine and freshwater algae, notable both for their functional diversity and ecological significance. They occur naturally as free-living cells, as endosymbionts of marine invertebrates and are well known for their involvement in "red tides". Dinoflagellates are also notable for their unusual genome content and structure, which suggests that the organization and regulation of dinoflagellate genes may be very different from that of most eukaryotes. To investigate the content and regulation of the dinoflagellate genome, we performed a global analysis of the transcriptome of the toxic dinoflagellate Alexandrium fundyense under nitrate- and phosphate-limited conditions using Massively Parallel Signature Sequencing (MPSS). RESULTS: Data from the two MPSS libraries showed that the number of unique signatures found in A. fundyense cells is similar to that of humans and Arabidopsis thaliana, two eukaryotes that have been extensively analyzed using this method. The general distribution, abundance and expression patterns of the A. fundyense signatures were also quite similar to other eukaryotes, and at least 10% of the A. fundyense signatures were differentially expressed between the two conditions. RACE amplification and sequencing of a subset of signatures showed that multiple signatures arose from sequence variants of a single gene. Single signatures also mapped to different sequence variants of the same gene. CONCLUSION: The MPSS data presented here provide a quantitative view of the transcriptome and its regulation in these unusual single-celled eukaryotes. The observed signature abundance and distribution in Alexandrium is similar to that of other eukaryotes that have been analyzed using MPSS. Results of signature mapping via RACE indicate that many signatures result from sequence variants of individual genes. These data add to the growing body of evidence for widespread gene duplication in dinoflagellates, which would contribute to the transcriptional complexity of these organisms. The MPSS data also demonstrate that a significant number of dinoflagellate mRNAs are transcriptionally regulated, indicating that dinoflagellates commonly employ transcriptional gene regulation along with the post-transcriptional regulation that has been well documented in these organisms

    Characterization of ferredoxin and flavodoxin as molecular indicators of iron limitation in marine eukaryotic phytoplankton

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Biology, 1997."Funding was provided by a Department of Energy Graduate Fellowship for Global Change and an Exploratory Research Agreement No. RP8021-05 from the Electric Power Research Institute."Includes bibliographical references.by Deana L. Erdner.Ph.D

    Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters

    Get PDF
    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 d under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters

    The Phytoplankton Taxon-Dependent Oil Response and Its Microbiome: Correlation but Not Causation

    Get PDF
    Phytoplankton strongly interact with their associated bacteria, both attached (PA), and free-living (FL), and bacterial community structures can be specific to phytoplankton species. Similarly, responses to environmental stressors can vary by taxon, as exemplified by observed shifts in phytoplankton community structure from diatoms to phytoflagellates after the Deepwater Horizon (DWH) oil spill. Here, we assess the extent to which associated bacteria influence the phytoplankton taxon-specific oil response by exposing xenic and axenic strains of three phytoplankton species to oil and/or dispersant. The dinoflagellates Amphidinium carterae and Peridinium sociale, and the diatom Skeletonema sp., all harbored significantly distinct bacterial communities that reflected their host oil response. Oil degrading bacteria were detected in both PA and FL communities of the oil resistant dinoflagellates, but their FL bacteria were more efficient in lipid hydrolysis, a proxy for oil degradation capability. Inversely, the growth rate and photosynthetic parameters of the diatom Skeletonema sp. was the most impacted by dispersed oil compared to the dinoflagellates, and oil-degrading bacteria were not significantly associated to its microbiome, even in the dispersed oil treatment. Moreover, the FL bacteria of Skeletonema did not show significant oil degradation. Yet, the lack of consistent significant differences in growth or photosynthetic parameters between the xenic and axenic cultures after oil exposure suggest that, physiologically, the associated bacteria do not modify the phytoplankton oil response. Instead, both oil resistance and phycosphere composition appear to be species-specific characteristics that are not causally linked. This study explores one aspect of what is undoubtedly a complex suite of interactions between phytoplankton and their associated bacteria; future analyses would benefit from studies of genes and metabolites that mediate algal-bacterial exchanges

    Fiber-optic microarray for simultaneous detection of multiple harmful algal bloom species

    Get PDF
    Author Posting. Β© American Society for Microbiology, 2006. This article is posted here by permission of American Society for Microbiology for personal use, not for redistribution. The definitive version was published in Applied and Environmental Microbiology 72 (2006): 5742-5749, doi:10.1128/AEM.00332-06.Harmful algal blooms (HABs) are a serious threat to coastal resources, causing a variety of impacts on public health, regional economies, and ecosystems. Plankton analysis is a valuable component of many HAB monitoring and research programs, but the diversity of plankton poses a problem in discriminating toxic from nontoxic species using conventional detection methods. Here we describe a sensitive and specific sandwich hybridization assay that combines fiber-optic microarrays with oligonucleotide probes to detect and enumerate the HAB species Alexandrium fundyense, Alexandrium ostenfeldii, and Pseudo-nitzschia australis. Microarrays were prepared by loading oligonucleotide probe-coupled microspheres (diameter, 3 ΞΌm) onto the distal ends of chemically etched imaging fiber bundles. Hybridization of target rRNA from HAB cells to immobilized probes on the microspheres was visualized using Cy3-labeled secondary probes in a sandwich-type assay format. We applied these microarrays to the detection and enumeration of HAB cells in both cultured and field samples. Our study demonstrated a detection limit of approximately 5 cells for all three target organisms within 45 min, without a separate amplification step, in both sample types. We also developed a multiplexed microarray to detect the three HAB species simultaneously, which successfully detected the target organisms, alone and in combination, without cross-reactivity. Our study suggests that fiber-optic microarrays can be used for rapid and sensitive detection and potential enumeration of HAB species in the environment.This work was funded by the Sea Grant Technology Program (NA16RG2273)

    Insights into the loss factors of phytoplankton blooms : the role of cell mortality in the decline of two inshore Alexandrium blooms

    Get PDF
    Author Posting. Β© The Author(s), 2017. This is the author's version of the work. It is posted here under a nonexclusive, irrevocable, paid-up, worldwide license granted to WHOI. It is made available for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 62 (2017): 1742–1753, doi:10.1002/lno.10530.While considerable effort has been devoted to understanding the factors regulating the development of phytoplankton blooms, the mechanisms leading to bloom decline and termination have received less attention. Grazing and sedimentation have been invoked as the main routes for the loss of phytoplankton biomass, and more recently, viral lysis, parasitism and programmed cell death (PCD) have been recognized as additional removal factors. Despite the importance of bloom declines to phytoplankton dynamics, the incidence and significance of various loss factors in regulating phytoplankton populations have not been widely characterized in natural blooms. To understand mechanisms controlling bloom decline, we studied two independent, inshore blooms of Alexandrium fundyense, paying special attention to cell mortality as a loss pathway. We observed increases in the number of dead cells with PCD features after the peak of both blooms, demonstrating a role for cell mortality in their terminations. In both blooms, sexual cyst formation appears to have been the dominant process leading to bloom termination, as both blooms were dominated by small-sized gamete cells near their peaks. Cell death and parasitism became more significant as sources of cell loss several days after the onset of bloom decline. Our findings show two distinct phases of bloom decline, characterized by sexual fusion as the initial dominant cell removal processes followed by elimination of remaining cells by cell death and parasitism.This article is a result of research funded by the National Oceanic and Atmospheric Administration Center for Sponsored Coastal Ocean Research ECOHAB program under award no. NA09NOS4780166 to the University of Texas Marine Science Institute (D.L.E) and the Woods Hole Center for Oceans and Human Health by National Science Foundation (NSF) award no. OCE-1314642 and National Institute of Environmental Health Sciences (NIEHS) award no. 1-P01-ES021923-014 to D.M.A. and M.L B

    Development of microsatellite markers in the toxic dinoflagellate Alexandrium minutum (Dinophyceae)

    Get PDF
    Author Posting. Β© Blackwell, 2006. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Molecular Ecology Notes 6 (2006): 756-758, doi:10.1111/j.1471-8286.2006.01331.x.Outbreaks of paralytic shellfish poisoning caused by the toxic dinoflagellate Alexandrium minutum (Dinophyceae) are a worldwide concern from both the economic and human health points of view. For population genetic studies of A. minutum distribution and dispersal, highly polymorphic genetic markers are of great value. We isolated 12 polymorphic microsatellites from this cosmopolitan, toxic dinoflagellate species. These loci provide one class of highly variable genetic markers, as the number of alleles ranged from 4 to 12, and the estimate of gene diversity was from 0.560 to 0.862 across the 12 microsatellites; these loci have the potential to reveal genetic structure and gene flow among A. minutum populations.Support for this research provided in part (to DMA) by U.S. National Science Foundation grants OCE-0136861 and OCE-0430724, and the National Institute of Environmental Health Sciences Grant 1 P50 ES012742-01

    Transcriptome profiling of a toxic dinoflagellate reveals a gene-rich protist and a potential impact on gene expression due to bacterial presence

    Get PDF
    Β© The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 5 (2010): e9688, doi:10.1371/journal.pone.0009688.Dinoflagellates are unicellular, often photosynthetic protists that play a major role in the dynamics of the Earth's oceans and climate. Sequencing of dinoflagellate nuclear DNA is thwarted by their massive genome sizes that are often several times that in humans. However, modern transcriptomic methods offer promising approaches to tackle this challenging system. Here, we used massively parallel signature sequencing (MPSS) to understand global transcriptional regulation patterns in Alexandrium tamarense cultures that were grown under four different conditions. We generated more than 40,000 unique short expression signatures gathered from the four conditions. Of these, about 11,000 signatures did not display detectable differential expression patterns. At a p-value < 1E-10, 1,124 signatures were differentially expressed in the three treatments, xenic, nitrogen-limited, and phosphorus-limited, compared to the nutrient-replete control, with the presence of bacteria explaining the largest set of these differentially expressed signatures. Among microbial eukaryotes, dinoflagellates contain the largest number of genes in their nuclear genomes. These genes occur in complex families, many of which have evolved via recent gene duplication events. Our expression data suggest that about 73% of the Alexandrium transcriptome shows no significant change in gene expression under the experimental conditions used here and may comprise a β€œcore” component for this species. We report a fundamental shift in expression patterns in response to the presence of bacteria, highlighting the impact of biotic interaction on gene expression in dinoflagellates.This work was primarily funded by a collaborative grant from the National Institutes of Health (R01 ES 013679-01A2) awarded to DB, DMA, and M. Bento Soares. Funding support for DMA and DLE was also provided from the Woods Hole Center for Oceans and Human Health from the NSF/NIEHS Centers for Oceans and Human Health program, NIEHS (P50 ES 012742) and (NSF OCE-043072). Additional support came from the National Science Foundation (EF-0732440) in a grant awarded to F. Gerald Plumley, DB, JDH, and DMA. AM was supported by an Institutional NRSA (T 32 GM98629)

    Comparison of Spatial and Temporal Genetic Differentiation in a Harmful Dinoflagellate Species Emphasizes Impact of Local Processes

    Get PDF
    Population genetic studies provide insights into intraspecific diversity and dispersal patterns of microorganisms such as protists, which help understanding invasions, harmful algal bloom development and occurrence of seafood poisoning. Spatial genetic differentiation has been reported in many microbial species indicating significant dispersal barriers among different habitats. Temporal differentiation has been less studied and its frequency, drivers, and magnitude are thus relatively poorly understood. The toxic dinoflagellate species Gambierdiscus caribaeus was sampled during 2 years in the Florida Keys, and repeatedly from 2006 to 2016 at St. Thomas, US Virgin Islands (USVI), including a 3-year period with monthly sampling, enabling a comparison of spatial and temporal genetic differentiation. Samples from the USVI site showed high temporal variability in local population structure, which correlated with changes in salinity and benthic habitat cover. In some cases, temporal variability exceeded spatial differentiation, despite apparent lack of connectivity and dispersal across the Greater Caribbean Region based on the spatial genetic data. Thus, local processes such as selection might have a stronger influence on population structure in microorganisms than geographic distance. The observed high temporal genetic diversity challenges the prediction of harmful algal blooms and toxin concentrations, but illustrates also the evolutionary potential of microalgae to respond to environmental change

    Paralytic shellfish toxin content is related to genomic sxtA4 copy number in Alexandrium minutum strains

    Get PDF
    Dinoflagellates are microscopic aquatic eukaryotes with huge genomes and an unusual cell regulation. For example, most genes are present in numerous copies and all copies seem to be obligatorily transcribed. The consequence of the gene copy number (CPN) for final protein synthesis is, however, not clear. One such gene is sxtA, the starting gene of paralytic shellfish toxin (PST) synthesis. PSTs are small neurotoxic compounds that can accumulate in the food chain and cause serious poisoning incidences when ingested. They are produced by dinoflagellates of the genera Alexandrium, Gymnodium, and Pyrodinium. Here we investigated if the genomic CPN of sxtA4 is related to PST content in Alexandrium minutum cells. SxtA4 is the 4th domain of the sxtA gene and its presence is essential for PST synthesis in dinoflagellates. We used PST and genome size measurements as well as quantitative PCR to analyze sxtA4 CPN and toxin content in 15 A. minutum strains. Our results show a strong positive correlation between the sxtA4 CPN and the total amount of PST produced in actively growing A. minutum cells. This correlation was independent of the toxin profile produced, as long as the strain contained the genomic domains sxtA1 and sxtA4
    corecore