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ABSTRACT

Expression and regulation of the ferredoxin and flavodoxin proteins in
marine phytoplankton were investigated to assess their utility as biomarkers
of iron limitation. A phylogenetic survey of seventeen microalgal species
showed flavodoxin induction, with accompanying ferredoxin repression, to
be a common response to iron stress. A minority of organisms examined
never expressed flavodoxin, a condition associated with, but not characteristic
of, neritic habitats. Antibodies raised against ferredoxin and flavodoxin from
Thalassiosira weissflogii proved to be mono- and diatom-specific,
respectively.

Flavodoxin induction responded specifically to iron limitation and not to
nitrogen, phosphorus, silicate, zinc or light deficiency. In iron-limited T.
weissflogii, relative cellular ferredoxin and flavodoxin content (Fd index)
varied with growth rates above ~50%gmax and was not affected by growth on
either nitrate or ammonium as a sole nitrogen source. Below ~5 0%l.max,
ferredoxin was absent. This variation with severity of stress and specificity to
iron limitation make the Fd index an excellent choice as an indicator of iron
limitation.

HPLC measurement of ferredoxin and flavodoxin during the IronExII
mesoscale enrichment experiment detected a strong flavodoxin signal but no
significant ferredoxin synthesis, despite increases in chlorophyll and
photosynthetic efficiency (Fv/Fm) observed by others. The absence of
ferredoxin and the persistence of flavodoxin suggested that iron addition
released the phytoplankton from iron starvation but was insufficient to
completely relieve physiological iron limitation. Laboratory experiments
demonstrated that a pennate diatom clone isolated from the IronExII bloom
expressed both flavodoxin and ferredoxin and could alter its protein
expression in about one day, further supporting the conclusion of continued
iron limitation during IronExII.



During IronExII, Fd index was uniformly zero while Fv/Fm increased from
0.26 to 0.56. In contrast, a laboratory iron addition experiment showed little
change in Fv/Fm when the Fd index increased from 0.5-0.9. A conceptual
model of the covariation of Fv/Fm and Fd index describes a complementary
relationship between the two measures. Model results suggest that
photochemical systems are affected by iron limitation only after cellular
adaptive capacity, in the form of ferredoxin, is exhausted.
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Oceanic carbon fixation is one of the largest single fluxes in the global

carbon cycle. While oceanic phytoplankton constitute only 1-2% of global

plant carbon, they account for a disproportionately large part of global carbon

fixation: 35-50 billion metric tons every year, about 40% of the total

(Sarmiento & Siegenthaler 1992). Oceanic photosynthesis generates a

"biological pump" in which the sinking of phytoplankton serves to enrich

the deep ocean with carbon in excess of that due to strictly chemical processes

such as gas diffusion. To understand the ways in which oceanic production

responds to, and is affected by, increases in atmospheric CO 2, it is essential

that we understand the factors that control carbon fixation by marine

organisms.

In addition to carbon, phytoplankton require significant amounts of

nitrogen and phosphorus for growth. Since concentrations of N and P are

essentially undetectable in most of the world's oceans, growth of

phytoplankton is thought to be constrained by their availability. However, in

three oceanic regions, the Southern Ocean and the Equatorial and Subarctic

Pacific, there exists an excess of surface macronutrients. These areas are

designated "high nutrient-low chlorophyll" (HNLC) areas because the

phytoplankton biomass present is low relative to the amounts of available

macronutrients. Concentrations of N and P are high and should not limit

growth. These areas have been studied by oceanographers for years in

attempts to determine the factor(s) that limit production.

Several hypotheses were proposed to explain this paradox. It was

argued that zooplankton grazing could maintain phytoplankton abundance

below levels required to deplete all available nutrients (Walsh 1976, Frost



1991, Minas & Minas 1992). A related theory suggested inhibition of nitrate

uptake by the ammonium produced as a result of grazing (Wheeler &

Kokkinakis 1990). In the Southern Ocean, it was posited that insufficient light

due to deep mixing kept phytoplankton biomass low (Mitchell et al. 1991). In

addition, low temperatures in Antarctic waters could slow enzyme uptake

kinetics (Tilzer et al. 1986, Dugdale & Wilkerson 1990). A parallel hypothesis

was that, in general, the uptake kinetics of phytoplankton in HNLC areas

were not fast enough to utilize the available nutrients (Dugdale & Wilkerson

1991). Toxicity, due to an excess of a metal micronutrient, was also suggested

(Barber & Ryther 1969, Huntsman & Sunda 1980). However, the hypothesis

that has received the most attention in recent years was the idea that

phytoplankton production in HNLC waters is limited by a lack of iron.

The suggestion by Martin in 1990 that iron-limited phytoplankton

could be stimulated to absorb more atmospheric CO2 by the addition of iron

generated considerable controversy and research (Martin et al. 1990). Primary

evidence of iron limitation was initially derived from iron addition bioassays.

Such bioassays consist of the addition of iron to a natural water sample

contained in a bottle, keeping a duplicate sample as a control. The

concentrations of nitrate, chlorophyll--a and iron are then monitored

throughout on-deck incubations. Similar experiments were attempted years

ago (Barber & Ryther 1969), but results are suspect given the discovery of the

critical importance of trace metal clean sampling techniques (Fitzwater et al.

1982). Due to the vanishingly low (pM to nM) concentrations of most trace

metals in seawater , it is imperative that investigators adhere to strict trace



metal clean protocols when conducting these bottle experiments. Even slight

contamination can completely invalidate the results.

Martin's Fe-enriched samples showed an increase in chlorophyll and

an accompanying decrease in nitrate compared to control, unenriched bottles

after several days of incubation. This seemed to suggest enhancement of

phytoplankton growth due to the added iron, leading to increased nitrate

uptake and greater biomass. These results led to the "Iron Hypothesis"

(Martin 1990), which linked increased primary production, presumably due to

enhanced iron inputs, to enhanced uptake of atmospheric CO 2 and hence

climatic change. Further support for this hypothesis was derived from ice

core analyses which show an inverse correlation between CO2 and Al (a proxy

for Fe) concentrations in the Vostok ice core (Barnola et al. 1987).

The bottle bioassays provided compelling circumstantial evidence of

iron limitation, but were widely criticized for a number of reasons. Execution

of the bioassays is difficult at best because of metal contamination problems,

and interpretation of the results is plagued by uncertainties (e.g. Venrick et al.

1977). Changes in chlorophyll and nitrate concentrations in the bottles are

indirect measures of iron limitation and their conversion to growth rates is

not straightforward (Banse 1990, Martin et al. 1990). Bottles are an unnatural

environment that introduces several possible artifacts. Large zooplankton are

often excluded, thus reducing grazing pressure. The bottles also remove

sinking effects, as larger cells that might normally fall from surface waters

will be able to grow, especially if the larger grazers are not present.

A prominent observation from the bottle incubations is that there was

typically a change in phytoplankton species composition in enriched samples



compared to the controls (Martin et al. 1989, Buma et al. 1991). Initially, the

samples are dominated by picoplankton, but iron enrichment tends to favor

the growth of large diatoms and coccolithophorids. This could have several

causes. It is possible that only the larger cells, present initially in low

numbers, are iron-limited, and they then bloom upon addition of iron.

Alternatively, the entire community could be iron-limited, but the lack of

large grazers allows the larger diatoms to outcompete the picoplankton and

dominate the sample.

The confusing and controversial experimental evidence collected prior

to 1991 was reconciled in the "Ecumenical Hypothesis" (Price et al. 1991). In

this scenario, the phytoplankton community in HNLC waters was iron-

stressed. Picoplankton dominated, growing chiefly on NH4+ in a tight

coupling to grazers in a microbial loop. Iron addition allowed the larger

phytoplankton, which were iron limited, to utilize nitrate (nitrate reductase

contains iron) and grow, thus altering the species composition, increasing

biomass, and reducing nitrate levels to zero.

All of the above hypotheses are difficult to prove, due to complex

interactions involving grazers, nutrients, sinking, etc. It seemed necessary to

uncouple the different putative limiting factors and examine them separately.

It was at this point that this dissertation was initiated, in an attempt to create

better tools for the unambiguous assessment of iron limitation in the ocean.

The goal was to develop an assay for the diagnosis of iron limitation in

natural samples that was rapid, specific to iron limitation, and did not require

incubation or manipulation of the phytoplankton community. This could be

achieved through the use of so-called "diagnostic indicators", measures of



cellular processes that are directly influenced by a particular limiting factor.

Such diagnostics use the cell as a reporter of the environmental conditions

that it "perceives". This project aimed to identify a specific protein, gene, or

transcript that was specifically affected by iron limitation, for use as a

diagnostic molecular probe in situ. allowing separation of the effects of

different limiting factors.

The search for an iron-stress indicator began in the literature, where a

likely candidate was soon identified. One particularly well-studied response

to iron limitation is the replacement of the common iron-sulfur protein

ferredoxin with the functionally equivalent, but non-iron-containing, protein

flavodoxin. This response had been identified first in 1965 (Smillie 1965).

Since then, it had been widely studied in the laboratory, primarily in bacteria,

the green alga Chlorella and the freshwater cyanobacterium Anabaena.

Ferredoxin is a catalytic iron-sulfur protein containing a 2Fe-2S cluster

in algae and plants, and from 3Fe-3S to 8Fe-8S in bacteria (for review see

Buchanan & Amrnon 1971). Algal ferredoxins are small, usually ca. 12 kDa, and

extremely acidic with low isoelectric points. They perform a number of

common redox functions in cells, e.g. serving as the terminal electron donor

to NADPH in photosynthetic electron transport and participating in nitrite

reduction, pyruvate reduction and nitrogen fixation. Ferredoxin is highly

water-soluble, being located in the stroma of chloroplasts. In marine diatoms,

the ferredoxin gene is located in the chloroplast genome (Kowallik et al. 1995).

Flavodoxin, the functional equivalent of ferredoxin, is almost twice as

large, ca. 22 kDa in algae (for review see Tollin & Edmondson 1980). Instead

of Fe, it contains one molecule of flavin mononucleotide (FMN) as a co-



factor. Flavodoxin is also very acidic, with a low isoelectric point, and is

capable of substituting for ferredoxin in vitro for most reactions that have

been tested. It has been reported to be both more and less efficient than

ferredoxin in electron transfer, depending upon the reaction being studied

(e.g. Smillie 1965, Sandmann et al. 1990, Razquin et al. 1995). Like ferredoxin,

it is water soluble and present in the chloroplast stroma. In contrast to

ferredoxin, there is no evidence of the flavodoxin gene on the chloroplast

genome, thus it is presumably nuclear-encoded.

Laboratory studies of the ferredoxin-flavodoxin switch indicate that its

role as an iron-stress response is not completely straightforward. There exists

some heterogeneity in response, as not all organisms examined produce

flavodoxin while some induce it under iron limitation and others express it

constitutively. Various strains of the freshwater cyanobacterium Anabaena

show three different modes of induction: Anabaena ATCC29413 induces

flavodoxin when iron-limited (Fillat et al. 1988), Anabaena ATCC29211 does

not produce flavodoxin (Pardo et al. 1990), while Anabaena ATCC29151

produces flavodoxin constitutively in its heterocysts (Sandmann et al. 1990).

In addition, some cyanobacteria possess different ferredoxin and/or

flavodoxin isoforms that are dedicated to nitrogen fixation (Schrautemeier &

B6hme 1985, Klugkist et al. 1986, B6hme & Schrautemeier 1987). Still other

studies have found an influence of other types of stress on flavodoxin

expression. Flavodoxin is induced by light in both wheat and pea (Dobres et

al. 1987, Bringloe et al. 1995). Salt and heat shock, as well as iron stress, induce

flavodoxin expression in Synechocystis (Fulda & Hagemann 1995). In the

green alga Chlorella, flavodoxin is expressed during heterotrophic growth in



both iron-replete and -deplete conditions (Inda and Peleato, pers. comm.).

These uncertainties made it necessary to characterize the use and regulation

of this switch in algae before it could be properly used as an ecological

indicator in the field.

In spite of the uncertainties regarding flavodoxin use and regulation,

there were a few isolated attempts to use it as a diagnostic of iron limitation

in natural populations. In 1986, Entsch et al. purified ferredoxin and

flavodoxin from cyanobacteria and dinoflagellates collected from the Great

Barrier Reef (Entsch et al. 1983). The cyanobacteria, which contained both

flavodoxin and ferredoxin, were judged to be iron-limited whereas the lack of

flavodoxin in the symbiotic dinoflagellates was taken as evidence of iron

sufficiency. A subsequent study by Jones examined the relative proportions of

ferredoxin and flavodoxin in the nitrogen-fixing colonial cyanobacterium

Trichodesmium collected from the Caribbean (Jones 1988). Increases in the

ferredoxin:flavodoxin ratio of this organism were correlated with storm

events, which were presumed to provide iron-rich aeolian dust. Both of

these analyses must be considered preliminary, as there were no published

studies regarding flavodoxin induction in marine microalgae at that time.

Entsch et al. relied on information from the freshwater literature and the

techniques used by Jones were based on the freshwater cyanobacterium

Anabaena. There remained a clear need for information regarding the

ferredoxin-flavodoxin system in marine phytoplankton.

That was the state of our knowledge in 1991 when this dissertation was

initiated. In the six years since then, much has been learned, both about iron



limitation in the oceans and about ferredoxin and flavodoxin. Most notably,

the hypothesis that iron limits primary productivity in the Equatorial Pacific

was tested in 1993 and 1995 by direct in situ fertilization of the ocean. At the

same time, the concept of flavodoxin expression as an indicator of iron

limitation has gained considerable prominence.

The IronEx experiment, performed in October of 1993, enriched a 64

km2 patch of the equatorial Pacific ocean with -4 nM iron (Martin et al. 1994).

Scientists detected a significant biological change but small chemical changes

(nutrients and C0 2) during the four days that the patch was tracked prior to its

subduction beneath a low-salinity front. These results demonstrated not only

a direct iron-mediated response of the ecosystem but, more importantly, the

feasibility of mesoscale open-ocean manipulations. The knowledge gained

during IronEx was applied in an expanded fertilization experiment, dubbed

IronEx II, which was conducted in May and June of 1995 (Coale et al. 1996).

This second experiment added iron in three infusions, spaced three days

apart, whereas IronEx utilized a single iron addition. The fertilization

triggered a tremendous phytoplankton bloom which removed large

quantities of both nitrate and CO2 during the nineteen days that it was

monitored. These two experiments demonstrated unequivocally that iron

does indeed limit primary production in the Equatorial Pacific. In the process

they revolutionized the way we think about ecological studies of the ocean.

While mesoscale ocean enrichments provide invaluable data about ocean

processes at the ecosystem scale, they are not a useful and practical method for

the routine assessment of iron limitation in the environment. They do not



obviate the need for diagnostic indicator systems such as ferredoxin and

flavodoxin.

The ferredoxin and flavodoxin proteins, and their potential for use in

the detection of iron limitation, did not escape notice in the intervening

years. LaRoche et al., when searching for proteins induced in response to

nutrient starvation, identified a major iron-stress induced protein from

Phaeodactylum tricornutum as flavodoxin (LaRoche et al. 1993). They

subsequently developed a polyclonal antibody to Phaeodactylum flavodoxin,

which reacts with flavodoxin from a number of diatom species (LaRoche et al.

1995). This antibody has been used to demonstrate the insensitivity of

flavodoxin expression to nitrogen and phosphorus stress. In addition,

LaRoche et al. used this antibody to detect flavodoxin expression in

Rhizoselenia mats from the equatorial Pacific and diatoms from the northeast

subarctic Pacific (LaRoche et al. 1996). The work of LaRoche et al. has done

much to popularize flavodoxin's use as an indicator of iron limitation. Their

antibody techniques are, however, presently restricted to use in diatoms, and

detect flavodoxin qualitatively on the basis of its presence or absence. The

aim of this dissertation was more broad: to develop a quantitative,

universally applicable assay for the assessment of iron limitation of marine

phytoplankton in the environment.

The characterization of the ferredoxin and flavodoxin system presented

here followed the reasoning of Falkowski et al. (1992), who stated that "useful

diagnostic tools must identify those processes that

1) impose a truly physiological limitation,

2) are uniquely affected by a specific limiting factor,

i 1



3) are broadly applicable across phylogenetic lines, and

4) can be used in the field."

Beginning with the knowledge that iron stress is a truly physiological

limitation, the remaining three characters were systematically addressed.

The phylogenetic generality of flavodoxin induction was assessed by

screening seventeen different marine phytoplankton isolates, representing

four classes, for their ability to produce flavodoxin when iron limited.

Results of this phylogenetic survey are given in Chapter 1. Chapter 2

describes the regulation of ferredoxin and flavodoxin expression by nitrogen,

phosphorus, silicate, zinc and light as well as iron in a model species,

Thalassiosira weissflogii. Potential interacting effects of iron and nitrogen

growth substrate on ferredoxin and flavodoxin expression are also

investigated in Chapter 2.

Verification of the utility of ferredoxin and flavodoxin as diagnostic

indicators in the field is provided in Chapter 3, which details their use during

the IronEx II in situ iron fertilization experiment. Results of ferredoxin-

flavodoxin analyses during IronEx II were quite different from those obtained

by others using biophysical techniques. These differences were examined in

detail in the laboratory, and this comparison of biochemical and biophysical

methods for the detection of iron limitation is presented in Chapter 4.

Chapter 5.concludes with a summary of this work.

_ _____
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Chapter 1

A Phylogenetic Survey
in Marine

of Flavodoxin Induction
Phytoplankton



Abstract

Under conditions of iron stress, many organisms are able to replace the

common iron-sulfur redox protein ferredoxin with flavodoxin, a functionally

equivalent, non-iron-containing protein. These proteins have been proposed

to be indicators of iron nutritional status in marine phytoplankton, but

relatively little is known of their existence in algae other than diatoms. In

this study, seventeen marine phytoplankton isolates were tested using high

pressure liquid chromatography (HPLC) for their ability to induce flavodoxin

when their growth was limited by iron. The most common response (12 of 17

isolates) was an absence of flavodoxin under iron-sufficient conditions, with

induction of flavodoxin and suppression of ferredoxin expression when the

cells were iron-stressed. Flavodoxin expression was never observed in the

remaining five organisms, a phenomenon that has been observed mainly in

neritic organisms. This lack of flavodoxin induction correlates with high

intrinsic Fe requirements for growth in these same organisms. The

prevalence of the flavodoxin response supports its use as an indicator of iron

limitation in open-ocean regions; non-inducing species are unlikely to occur

in such waters due to their high iron requirements.

All 17 isolates were also screened using antibodies raised against

ferredoxin and flavodoxin purified from Thalassiosira weissflogii . The anti-

ferredoxin antibody detected ferredoxin only from Thalassiosira weissflogii.

The anti-flavodoxin antibody was more cross-reactive, detecting most diatom

flavodoxins but not those from other algal classes. Comparison of the

antibody results to those obtained by HPLC illustrates the strengths and

limitations of each technique. Antibodies have low detection limits and can



provide species- or class-specific results. However, they have varying

affinities for their target protein in different organisms, making quantitation

difficult for natural plankton communities. HPLC with diode array detection

can quantify ferredoxin and flavodoxin in individual cultures or entire

communities, though its higher detection limits make it unsuitable for class-

or species-specific analyses. Both methods should nonetheless prove useful

for the assessment of iron limitation in marine phytoplankton.



Introduction

Achieving an understanding of the factor(s) that limit primary

production in the oceans has been a goal of biological oceanographers for

decades. In most regions it is thought to be controlled by the availability of

macronutrients such as nitrate or phosphate. Persuasive evidence for the

concept of micronutrient, particularly trace metal, limitation has come about

only recently, with the advent of trace metal-clean techniques (Martin &

Fitzwater 1988, Martin et al. 1990, Coale 1991, Martin et al. 1993). While

elimination of metal contamination has greatly improved the accuracy of

nutrient limitation studies (Fitzwater et al. 1982), the basic assay methods

have changed little since their development decades ago.

The principal technique employed in studies of micronutrient

limitation is the bottle bioassay (Ryther & Guillard 1959). Natural water

samples are placed into bottles, now using clean techniques, where they are

enriched with the nutrient in question. Enhanced growth in experimental

bottles as compared to unamended control bottles provides evidence of

nutrient limitation. For example, nutrient addition bioassays of this type

were used by Martin and Fitzwater (1988) to make a case for iron limitation of

phytoplankton growth in the Subarctic Pacific. Their Fe-enriched samples

showed an increase in chl a and an accompanying decrease in nitrate after

several days of incubation relative to the controls. This suggested

enhancement of phytoplankton growth due to the added iron, leading to

elevated nitrate uptake and greater biomass. Results such as these formed the

basis of the "iron hypothesis", which links changes in iron availability and

oceanic primary production with variation in atmospheric CO2 and glacial-



interglacial transitions (Martin 1990). This proposal touched off a vigorous

debate about the relationship between iron and oceanic primary production.

Resolution of this debate is hindered in part by a lack of direct methods

for assessing iron limitation. Bottle bioassays entail manipulation of the

natural community, are difficult to perform in a clean fashion and require

days of incubation. In addition, interpretation of bioassay results is

confounded by so-called 'b ottle effects" - potential artifacts introduced by

enclosing natural populations in a small volume (e.g. Venrick et al. 1977).

Large zooplankton are often excluded, thus reducing grazing pressure. The

bottles also eliminate sinking effects as larger cells that might normally fall

from surface waters will be able to grow, particularly if larger grazers are not

present. The methodological difficulties inherent in the traditional bioassay

method highlight the need for better, more efficient ways to study nutrient

limitation.

In a recent attempt to address the specific question of iron limitation,

scientists performed an open-ocean nutrient enrichment (Coale et al. 1996).

During the IronEx II experiment, iron was added to a large patch of the

Equatorial Pacific Ocean and its response as well as that of a control area was

tracked for over two weeks. The results provided conclusive evidence for

limitation of primary production in the Equatorial Pacific by iron. The IronEx

II experiment was an unconventional approach to the study of iron

limitation and a truly revolutionary accomplishment in oceanography.

Unfortunately, large open-ocean manipulations such as this are time-

consuming, prohibitively expensive and far beyond the scope of the average

field study.



In the continued search for innovative ways to assess phytoplankton

nutrient limitation, some oceanographers have turned to the tools of

molecular biology (Ward 1990, Falkowski & LaRoche 1991). Most attention

has focused on molecular "diagnostics" of various physiological states

(Laudenbach & Straus 1988, Scanlan et al. 1989, LaRoche et al. 1993, Doucette

et al. 1996). This approach is based upon the concept that an organism's

response to environmental conditions often involves the synthesis or

expression of molecules that are unique to that condition. By detecting

alterations in the abundance of such proteins or nucleic acids, the cell may be

used as a reporter of the environmental conditions that it "perceives". Such

molecular indicators could provide a rapid assay of the cell's physiological

state without the need for excessive manipulation. The challenges thus far

have been the identification of appropriate diagnostic molecules and the

development of methods for their measurement.

The primary candidate for a diagnostic indicator of iron limitation is

the redox protein flavodoxin. Flavodoxin is induced in response to iron

stress as a functional replacement for the iron-sulfur protein ferredoxin,

which cells utilize when iron is not limiting growth. This adaptation has

been studied for decades, primarily in freshwater algae and bacteria (e.g.

Vetter & Knappe 1971, Zumft & Spiller 1971, Fillat et al. 1988). Some

variability in response has been observed, as not all organisms employ this

strategy (Pardo et al. 1990). Before flavodoxin can be used as an indicator of

iron limitation in the ocean, however, it must be better characterized in

marine phytoplankton. Criteria for such a characterization were detailed by

Falkowski et al (1992): "To be useful, diagnostic tools must identify those



processes that 1) impose a truly physiological limitation, 2) are uniquely

affected by a specific limiting factor, 3) are broadly applicable across

phylogenetic lines, and 4) can be used in the field."

This study addresses the third of these criteria - the generality of

flavodoxin induction as a response to iron limitation. A few laboratory

studies to date have documented flavodoxin induction in a small number of

unicellular marine organisms (LaRoche et al. 1995, Doucette et al. 1996), all of

which were diatoms. Here a variety of marine phytoplankton cultures

representing different taxonomic groups were examined to determine the

generality of the flavodoxin substitution strategy. These same organisms

were also used to characterize the cross-reactivity of antibodies developed as a

potential detection method for flavodoxin and ferredoxin. Used as

immunological probes, antibodies have the potential to reveal iron

limitation at the level of individual cells or species.

Materials and Methods

Cultures Organisms used and their clone designations are listed in

Table I. The organisms listed as "EqPac pennate diatom sp." were isolated by

E. Mann from the iron-fertilization-induced pennate diatom bloom during

the IronEx II experiment. They were rendered clonal via single-cell isolation

by D. Erdner. While sterile techniques were employed and bacteria were not

apparent in cultures viewed under the light microscope, the cultures were

likely not axenic.

Growth of phytoplankton All cultures, except Synechococcus DC2,

were grown in a modification of ESNW medium as described previously



(Doucette et al. 1996) . Cultures of Synechococcus DC2 were not grown by the

authors, but were a gift from the University of Warwick and supplied as

freeze-dried cell pellets. Cultures were grown in 2.8 1 Fernbach flasks

containing 2 1 of medium. Organisms were transferred twice into the

appropriate medium (iron-replete or iron-limited) in 25 ml tubes before

inoculation into experimental flasks.

Cultures were grown at 150C, 200 C or 250 C under a 14:10 light:dark cycle

with illumination from "cool white" fluorescent lights at approximately 150

gE-m-2-s-1 as measured by a photometer (Biospherical Instruments model

QSP-100). Growth was monitored by microscope cell counts or Coulter

counter (Coulter Instruments, Hialeah, FL, USA), and cultures were

harvested by centrifugation when they reached late exponential phase. Cell

pellets were frozen at -800C until analysis.

Initially, trace metal-clean culturing techniques were employed for

growth of phytoplankton. All sterilization was performed by microwaving,

except for certain nutrient stocks (see below) (Keller et al. 1988). Cultures were

grown in sterile, acid-washed polycarbonate Fernbach flasks. Nutrient stocks

were kept in acid-cleaned teflon (PTFE) bottles. Chelex-treated Sargasso

seawater, sterilized by microwaving , was used as a base for the ESNW

medium (Price et al. 1989). All nutrient stocks were prepared using milli-Q

distilled deionized water. Nitrate, phosphate and silicate stocks were Chelex-

treated and sterilized by microwaving. Iron, EDTA, trace metal, vitamin and

selenium stocks were filter sterilized (0.2 gm).

After it became evident that strict trace metal-clean methods were

unnecessary for our purposes, "standard" culturing techniques were



employed. Acid-washed polycarbonate or glass Fernbach flasks and nutrient

stock bottles were sterilized by autoclaving. Media were prepared using 0.45

rm filtered and autoclaved Vineyard Sound seawater as a base (31%o).

Macronutrient and micronutrient stocks were sterilized by autoclaving and

sterile-filtering, respectively.

Iron-replete cultures grown in trace-metal clean medium contained 1 x

10-6 M Fe/10 x 10-6 M EDTA. In Vineyard Sound water medium, Fe addition

to replete cultures was 5 x 10-6 M Fe/50 x 10-6 M EDTA for all organisms

except for T. weissflogii. which was grown at 10 x 10-6 M Fe/ 100 x 10-6 M

EDTA. The replete Fe addition for T. weissflogii was subsequently increased

to 60 x 10-6 M Fe/ 100 x 10-6 M EDTA. Iron-limited cultures in both Sargasso

and Vineyard Sound water contained ESNW concentrations of all nutrients

except Fe, which was decreased according to the Fe requirements of

individual clones. EDTA was added to iron-limited cultures at 10 times the

added Fe concentration or 1 x 10-6 M, whichever was higher.

Confirmation of iron limitation Iron limitation at late exponential

phase in limited cultures was determined by several complementary

methods: decrease in growth rate compared to replete culture grown in

tandem, presence of chlorosis (assessed visually by comparison t replete

cultures), and Fe-addition bioassay (for trace metal-clean cultures). For

bioassays, 30 ml aliquots of iron-limited culture were transferred to acid-

cleaned polycarbonate tubes after which the remaining culture volume was

harvested. One tube was kept as a control, a second was enriched with Fe to

replete levels and the third was enriched with all nutrients except Fe. The



tubes were incubated as above and growth was tracked by in vivo

fluorescence.

HPLC analysis Protein extraction and high performance liquid

chromatography (HPLC) were performed as previously described (Doucette et

al. 1996).

Antibody production Cell extracts of T. weissflogii were precipitated in

90% acetone, dried and resuspended in extraction buffer (20 mM phosphate,

100 mM EDTA, 100 mM NaCl, 0.013 M 1-mercaptoethanol, 1 mM PMSF pH

7.0). Ferredoxin and flavodoxin were purified from this aqueous extract by

semi-preparative anion-exchange HPLC. Polyclonal antibodies were prepared

by East Acres Biologicals (Southbridge, MA, USA). Hens were immunized

with either ferredoxin or flavodoxin after collection of pre-immune serum.

Primary immunization and boosts occurred at three week intervals and

consisted of 100 gg of native protein with incomplete Freund's adjuvant.

Antibody solutions for Western blotting were derived both from serum and

from the yolks of eggs laid by immunized hens.

Western blotting Cells were disrupted by sonication in 20 mM

phosphate buffer pH 7.0 with'l1% SDS. Protein concentrations were measured

using the BCA protein assay (Pierce Chemical Co., Rockford, IL, USA), and

extracts were diluted to 1 gg total protein-1l-1 in sample buffer (4% SDS, 12%

w/v glycerol, 50 mM Tris, 2% v/v Pj-mercaptoethanol, 0.01% Serva blue pH

6.8). Proteins were separated on 10%T, 3%C tricine gels according to Schiigger

and von Jagow (1987) and transferred to nitrocellulose. The blots were

challenged with chicken primary antiserum at 1:500 dilution followed by anti-

chicken-horseradish peroxidase conjugated secondary antibody at 1:2500



dilution (Jackson Immunoresearch, West Grove, PA, USA).

Chemiluminescent ECL reagents (Amersham, Cleveland, OH, USA) were

used as the detection system.

Results

Modes of expression

In total, seventeen isolates representing four phytoplankton classes

were examined for their ability to induce flavodoxin when limited by iron.

Many of the organisms were grown and tested several times to ensure the

accuracy of determinations. The most common response (12 of 17 isolates)

was an absence of flavodoxin under iron-sufficient conditions, with

induction of flavodoxin and suppression of ferredoxin expression occurring

when the cells were iron-stressed. The remaining five organisms were never

observed to express flavodoxin under either iron-replete or -limited

conditions. The results of the HPLC analysis are summarized in Table I.

Absence of flavodoxin expression

Amongst the 17 isolates used in this study, a minority (5 of 17) were

never observed to express flavodoxin. With this group of organisms, a logical

concern was that the cultures examined were not iron-limited. However, in

iron-limited medium all exhibited both decreased growth rates compared to

replete cultures and visible chlorosis, which are consistent with iron stress

(Synechococcus was grown by others for this analysis, so similar growth rate

information is not available). Further evidence of iron limitation was

obtained from nutrient addition bioassays (Figure 3). Syracosphaera elongata

_ _ _ ________ _ ____



(Fig. 3a), Pleurochrysis carterae (Fig. 3b) and Minutocellus polymorphus (Fig.

3c) exhibited positive growth responses when iron was added to aliquots of

the iron-limited culture; addition of other nutrients elicited no change.

These cultures were indeed iron-limited. Cultures of Alexandrium

fundyense , however, showed no clear pattern of response in iron-addition

bioassays (Fig. 3d) when grown repeatedly under a variety of iron additions

from 0 nM to 1 jgM. Nevertheless a marked decrease in specific growth rate

(p=0.325-d -1 replete vs. 0.073-d-1 limited) was observed for A. fundyense

cultured in low-iron medium. As all other culturing conditions were

identical, the lack of iron must be responsible for the reduced growth rate for

this dinoflagellate.

Antibody cross-reactivity

These same 17 isolates analyzed by HPLC were used to determine the

specificity of antibodies developed against the ferredoxin (Figure 4) and

flavodoxin (Figure 5) proteins from Thalassiosira weissflogii. The Western

blot in Figure 4 clearly shows that the ferredoxin antibody exhibits a high

degree of specificity, showing reaction only against T. weissflogii. No cross-

reactions were seen, even with members of the same genus (Fig. 4, lane f).

The flavodoxin antibody exhibited broader cross-reactivity, detecting

flavodoxin from 4 of the 6 diatoms which were shown by HPLC to produce

flavodoxin. A seventh diatom, M. polymorphus , did not induce flavodoxin

nor react with the anti-flavodoxin antibody.

In addition to cross-reaction with diatom flavodoxins, the anti-

flavodoxin antibody seems to exhibit a lesser reaction against flavodoxins

_ _ .___



from other algal classes: Alexandrium fundyense (Fig. 5h), Symbiodinium

microadriaticum (Fig. 5i), Amphidinium carterae (Fig. 5j) and

Chrysochromulina ericina (Fig. 5m). In organisms other than diatoms, there

seems to be increased non-specific reaction, as evidenced by the dark

background in lanes i-o, with lane k being an extreme example. The blotted

samples contained total protein, not purified flavodoxin. Thus it is possible

that the flavodoxin antibody non-specifically recognizes a protein in a similar

size range. This can only be resolved by screening purified flavodoxin

proteins from the various organisms. Because of this uncertainty, it cannot

be stated definitively that the anti-flavodoxin antibody reacts with the

organisms in lanes h, i, j and m in Figure 5.

Discussion

This study constitutes the first comprehensive screening of flavodoxin

expression in a diverse group of marine phytoplankton, in an attempt to

determine the generality of flavodoxin induction as a biomarker of iron

limitation. Amongst the 4 classes of organisms surveyed, encompassing 17

different isolates, most exhibited flavodoxin induction when iron-limited.

Flavodoxin expression was never observed in several species (5 of 17), a

phenomenon that is observed mainly in neritic organisms. This implies that

non-induction should not present problems for ferredoxin/flavodoxin

measurements made in low-iron open-ocean environments, but may

complicate studies in coastal areas.

This phylogenetic survey also included characterization of the

reactivity of two antibodies developed as analytical tools for ferredoxin and



flavodoxin detection. The antibodies exhibit different levels of specificity

which determine, and also limit, their usefulness in natural populations.

The immunological method and HPLC technique used in this paper differ in

several respects, including phylogenetic specificity as well as the qualitative

and quantitative nature of the results. These differences are often

complementary and may be considered as advantages or disadvantages to

their use in the field, depending upon the ecological question being

addressed. It is therefore necessary to carefully consider the requirements of a

particular experiment in order to choose the analytical method most

appropriate to the task. These and other concepts relating to the use of

ferredoxin and flavodoxin as indicator proteins are discussed below.

Phylogenetic survey

From the data presented in Table I, it is evident that flavodoxin

induction is a common, but not universal, response to iron limitation in

marine phytoplankton. This heterogeneity in response is similar to that

documented in freshwater algae, where ferredoxin and flavodoxin have been

most extensively studied. Various strains of the freshwater cyanobacterium

Anabaena show three different modes of induction: Anabaena ATCC29413

induces flavodoxin when iron-limited (Fillat et al. 1988), Anabaena

ATCC29211 does not produce flavodoxin (Pardo et al. 1990), while Anabaena

ATCC29151 produces flavodoxin constitutively in its heterocysts (Sandmann

et al. 1990). The cyanobacteria Synechocystis (Bottin & Lagoutte 1992) and

Anacystis nidulans (Laudenbach et al. 1988), and the green alga Chlorella

fusca are all known to induce flavodoxin when iron-limited. Given our



results and those in the literature, flavodoxin induction in response to iron

limitation seems to be the most typical and frequently observed response.

Absence of flavodoxin expression

For organisms that did not express flavodoxin it is important to

confirm that the cultures were truly iron-limited. Nutrient addition

bioassays were used as one test of limitation. While growth of primary

cultures was monitored by cell counts, the bioassays were monitored by

measurement of in vivo fluorescence. Positive bioassays are characterized by

an increase in fluorescence in Fe-enriched samples. However, in vivo

chlorophyll fluorescence is known to be affected by iron stress, and its use

may seem to confound interpretation of the bioassay results. The increase in

fluorescence following iron addition can be accounted for in a number of

ways. First, higher fluorescence may be due to increases in chlorophyll per

cell rather than an increase in cell number. Second, it may be due to

increased biomass due to growth of cells in the culture. Finally, increases in

fluorescence are observed when cells become iron-limited as iron stress

causes damage to the photochemical apparatus and impairs electron transfer

capability (Terry 1983). In a sample that has been enriched with iron it is

unlikely that the cells would experience further iron stress. Therefore, the

enhanced fluorescence must be due to either increases in cell number, cell

volume or fluorescence per cell, all of which imply that the original culture

was indeed limited by iron.

While a positive bioassay provides additional evidence for iron

limitation, it is not a required proof of iron limitation when using controlled



laboratory cultures. One non-inducing organism, Alexandrium fundyense

consistently gave inconclusive results in the iron addition bioassays (Fig. 3d),

yet exhibited lower growth rates when iron limited growth. Iron-enriched

samples of low-iron A. fundyense cultures showed a bioassay response

similar to that of both control samples and samples enriched with all

nutrients except iron. This was true for cultures grown with iron levels

ranging from 0 nM to 1 gM in which no flavodoxin signal was ever observed

using HPLC. All deplete cultures were grown in tandem with a replete

culture, such that the two flasks were identical in all respects except for iron

concentration. A. fundyense showed a 75% decrease in growth rate in low-

iron cultures, consistent with limitation of its growth rate by iron.

Flavodoxin expression in Thalassiosira weissflogii

Results obtained from the centric diatom Thalassiosira weissflogii

during these analyses are somewhat different than those reported previously

(Doucette et al. 1996). Like most others, this species induces flavodoxin in

response to iron limitation, with an accompanying suppression of ferredoxin

expression. The response of T. weissflogii under iron-replete conditions,

however, is not as straightforward. At 1 pM Fe, T. weissflogii produces

similar amounts of both ferredoxin and flavodoxin (Figure 2a). In

comparison, the other organisms utilized in this study contain only

ferredoxin when grown at this iron level. When Fe additions are

subsequently increased to 10 pM, the level used in Doucette et al. (1996), T.

weissflogii contains primarily ferredoxin (Figure 2b). This is slightly more

iron than the highly defined medium Aquil (8.32 gM)(Price et al. 1988/1989)



but identical to the Fe level in the common f/2 medium (Guillard & Ryther

1962). However, a low level of flavodoxin expression persists, which we now

know to be the result of exceedingly high Fe requirements in T. weissflogii.

This low-level expression is suppressed by increasing the added Fe in the

culture to 60 gM, six times that of f/2 medium (Figure 2c). Thus, T.

weissflogii does not express flavodoxin when iron-replete (i.e., it is not

constitutive), but the Fe addition necessary for "replete" culture is far above

that required for the other phytoplankton examined here.

Flavodoxin as a diagnostic indicator of iron limitation

The existence of both flavodoxin-inducing and non-inducing

organisms suggests caution in the application of flavodoxin alone as a

biomarker of iron limitation in marine phytoplankton. Lack of flavodoxin

expression under iron-limiting conditions would yield a "false-negative" in

an assay for iron limitation if the presence of flavodoxin is used as the sole

criterion. Organisms that do not induce flavodoxin will not appear to be

iron-limited even when they are. Non-induction does not seem to be a

typical mode of expression, but it could potentially interfere with

interpretation of field measurements. Some of this uncertainty could be

reduced if some correlate of expression mode could be identified.

Accordingly, the data in Table 1 were examined for potential patterns

in the modes of expression. Results indicate that a lack of flavodoxin is not

confined to a particular taxonomic group; examples are seen amongst the

dinoflagellates, prymnesiophytes and diatoms. It does, however, seem to

occur primarily in coastally-derived clones within a class. Of the five non-



inducing organisms in this study, three were isolated from neritic habitats

while a fourth, Syracosphaera elongata, is of unknown origin. Phytoplankton

from neritic vs. oceanic habitats are known to exhibit different responses to

trace metals. Neritic species generally suffer iron limitation at Fe levels far

above those at which oceanic species show little or no impairment (Brand et

al. 1983, Brand 1991). However, this tendency for non-inducing organisms to

be coastally derived does not mean that coastal species in general are non-

inducers. In fact, the majority of the neritic clones examined in this study

expressed flavodoxin.

The results presented here agree well with published data on

phytoplankton iron requirements. Brand (1991) measured high minimum

iron requirements for the coastal coccolithophorids Syracosphaera elongata

and Pleurochrysis carterae, and the cyanobacterium Synechococcus DC2, all of

which do not produce flavodoxin. Doucette et al. (1989) calculated extremely

high minimum iron requirements for the red tide dinoflagellate

Alexandrium fundyense, another non-inducer. Organisms that are unable to

express flavodoxin seem to consistently exhibit elevated cellular

requirements for iron.

Sunda et al. (1991) argue that the increased success of oceanic

organisms at low metal concentrations as compared to neritic isolates is not

due to more efficient uptake systems, but to decreased cellular Fe

requirements for growth. The substitution of flavodoxin for ferredoxin

permits a reduction in cellular Fe quotas, since the former contains no iron

while the latter requires two iron atoms per molecule. Thus, organisms that

cannot express flavodoxin should be unable to persist in chronically low-iron



oceanic environments, and therefore would be constrained in their

distributions to more iron-rich coastal areas. In the analysis of samples from

open ocean, low iron environments, non-expression of flavodoxin should

therefore not be a large complication. Caution should be exercised, however,

with samples derived from more coastal environments. Iron availability in

nearshore areas, as measured chemically, seems to vary widely on small

temporal and spatial scales (Wells 1988/1989). When iron availability is very

low, non-inducing organisms are unlikely to constitute a significant portion

of biomass, due to their poor growth at low iron levels. In situations of high

iron stress, interference from non-inducing organisms may be negligible.

When iron stress is moderate, the situation becomes more complex.

Communities may contain a mix of organisms in varying proportions: non-

inducers which experience different levels of growth impairment and

inducing organisms that may or may not be expressing flavodoxin depending

upon their particular cellular iron requirements. In a scenario such as this,

results of flavodoxin assays may be uninterpretable. Further research may

elucidate some pattern or relationship that would facilitate

ferredoxin/flavodoxin studies'in coastal areas.

Antibodies

The. antibodies characterized here were developed as tools for studying

ferredoxin and flavodoxin in natural samples. Before they could be

effectively utilized, their phylogenetic range of reactivity needed to be

determined. The two antibodies show quite distinct levels of specificity. The

anti-ferredoxin antibody is monospecific - it reacts only against Thalassiosira



weissflogii, the species from which the original antigen was purified. It will

be useful for studies of ferredoxin regulation in T. weissflogii, but its use in

natural waters is otherwise limited. The flavodoxin antibody, on the other

hand, is less specific, reacting with 4 of the 6 diatoms that were tested. It too

will be useful for laboratory studies but also shows promise for use in natural

samples which would contain a variety of species.

Comparison of flavodoxin detection methods

An antibody-based method for measurement of flavodoxin and

ferredoxin is an attractive concept because of the low detection limits of

immunoassays. In contrast, the HPLC technique has detection limits that are

approximately 3 orders of magnitude higher (picomolar as compared to

femtomolar sensitivity). The implications for sample collection in the field

are obvious. The two methods also differ in other respects, such as

phylogenetic applicability and qualitative vs. quantitative nature of the

results.

The HPLC method with diode array detection (Doucette et al. 1996)

carries no bias with respect to phylogeny, whereas antibodies are generally

reactive towards particular subset(s) of plankton. Ferredoxin and flavodoxin,

regardless of source, will be measured chromatographically while antibodies

can only detect the response of certain organisms. For example, the anti-

flavodoxin antibody described here could be used to assess the iron status of

marine diatoms. This could be done either on a single cell basis, or on the

diatom sub-population, if used in conjunction with Western blotting (e.g.

LaRoche et al. 1995). In contrast, the HPLC technique is most useful for
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examining total community response (see Chapter 3). In order to study sub-

populations, it would be necessary to first separate the cells by a method such

as size fractionation or flow cytometric sorting. Each fraction can then be

analyzed separately, to determine the iron status of the various size classes or

sub-groups. While it is theoretically possible to apply the HPLC method in

this manner, available techniques for sample collection and cell sorting make

it impractical.

While antibodies are useful for dissecting community response, it is

extremely difficult to employ them in a quantitative manner. Antisera

generally exhibit varying binding affinity for target proteins from different

species (e.g. Orellana & Perry 1992). In a natural sample containing several

species of diatoms, the strength of the antibody reaction with our diatom-

specific antibody does therefore not depend solely upon the amount of

diatom flavodoxin present. It varies with binding affinity for flavodoxins

from different diatoms, the proportion of those species within the diatom

population, and the amount of diatom biomass relative to total biomass. For

these reasons, it is difficult to quantify proteins from a mixed sample based

upon antibody reaction strength. The HPLC method, in contrast, relies upon

spectrophotometric detection of flavodoxin and ferredoxin, which allows

calculation of protein quantity regardless of its source.

At.a very basic level, the antibody and HPLC techniques measure

different substances. Chromatographic detection is based upon light

absorption at specific wavelengths. For ferredoxin and flavodoxin, absorbance

depends upon the presence of appropriate cofactors such that only functional

(holo-) protein is detected. Antibodies often to react with both apo- and



holoproteins, so that even inactive forms will contribute to the signal. For

certain applications, it may be necessary to know the abundance of both forms

but for ecological purposes the amount of functional protein is most relevant.

The differences in the HPLC and antibody methods may be considered as

either advantages or disadvantages depending upon the problem to be

answered. The two techniques exhibit a complementary set of strengths and

limitations.

Field Applications

Several attempts have been made to utilize flavodoxin and/or

ferredoxin as indicators of iron stress in natural populations. Over a decade

ago, Entsch et al. (1983) argued for iron limitation of cyanobacteria (but not the

co-occurring symbiotic dinoflagellate Symbiodinium microadriaticum) from

the Great Barrier Reef based on presence or absence of flavodoxin purified

using chromatography. The clone of S. microadriaticum used in our study

was isolated as a symbiont from Tridacna clams, and as such is very similar to

the organism examined by Entsch et al. S. microadriaticum induces

flavodoxin when iron limited; supporting their conclusion that the clam

symbionts were not experiencing iron stress.

More recently, the presence of flavodoxin, detected by HPLC (Erdner &

Anderson 1996) and antibodies (LaRoche et al. 1995, LaRoche et al. 1996), has

been used as a qualitative indicator of iron stress in marine diatoms. The

only quantitative assessment of changes in nutritional status in natural

communities to date was by Jones (Jones 1988), who documented variation in

the flavodoxin:ferredoxin ratio over time in natural samples of
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Trichodesmium. Those differences could be correlated with changes in

atmospheric iron inputs. All of these studies, however, must be considered

preliminary, as little is known about the regulation of ferredoxin and

flavodoxin in marine algae save for its induction in response to iron stress.

Further characterization is needed before these biomarkers may be effectively

applied in the field.

This phylogenetic survey of the flavodoxin response is the first step in

the characterization of the ferredoxin/flavodoxin system in marine

phytoplankton. While this analysis included multiple representatives of the

diatoms, dinoflagellates and prymnesiophytes, only one marine

cyanobacterium, Synechococcus clone DC2, was examined. Marine

Synechococcus are a physiologically diverse group (Waterbury et al. 1986) and

might be expected to exhibit intragroup variability similar to that observed for

freshwater cyanobacteria and marine eukaryotes. As they are a prominent

component of the natural phytoplankton community in low-iron areas,

Synechococcus, and also Prochlorococcus, merit additional study with respect

to their flavodoxin response. In general, the phylogenetic survey of

flavodoxin expression should be extended to include as many organisms

from different classes and environments as possible.

To further evaluate the use of flavodoxin as a diagnostic indicator, it is

necessary, to determine if it is induced by other types of limitation. It does not

seem to be affected by macronutrient (N or P) stress (LaRoche et al. 1993) but

other possible limiting factors need to be considered. While it is not tractable

to examine all potential limiting factors, it is essential to test those which

organisms are most likely to experience in the environment. These should



include trace metals which are present in low levels in natural waters, such as

zinc and manganese, as well as metals that in excess can cause toxicity, such as

copper. It is also advisable to examine the effects of irradiance levels, since

both flavodoxin and ferredoxin are involved in photosynthetic electron

transport. There are numerous reports of light regulation of ferredoxin

expression in higher plants (Dobres et al. 1987, Vorst et al. 1993, Bovy et al.

1995, Bringloe et al. 1995), so it is possible that irradiance may play a similar

role in algae. Only if we establish that ferredoxin and flavodoxin are uniquely

regulated by iron and recognize the phylogenetic and geographic variability in

induction described above can we begin to intelligently apply these

biomarkers to ecological questions in natural systems.
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TABLE I: List of organisms examined in this study and their taxonomic class, clone designation, isolation
locale (classified as N-neritic or O-oceanic) and presence (+) or absence (-) of flavodoxin induction in response
to iron limitation.

organism
Alexandrium fundyense
Amphidinium carterae
Symbiodinium microadriaticum
Thalassiosira weissflogii
Thalassiosira oceanica
Minutocellus polymorphus
Chaetoceros gracilis
EqPac pennate diatom
EqPac pennate diatom
EqPac pennate diatom
Emiliania huxleyi
Emiliania huxleyi
Syracosphaera elongata
Pleurochrysis carterae
Phaeocystis sp.
Chrysochromulina ericina
Synechococcus DC2

dino.
dino.
dino.

diatom
diatom
diatom
diatom
diatom
diatom
diatom
prym.
prym.
prym.
prym.
prym.
prym.
cyano.

clone
GTCA29

CCMP1314
CCMP829
CCMP1336
CCMP1005
CCMP499
unknown

7-47B
10-40A
A3-30

CCMP370
CCMP373
CCMP874
CCMP645
CCMP1528
CCMP281
CCMP1334

location
Gulf of Maine 43*00'N, 70019'W
Great Pond Falmouth, MA USA
Great Barrier Reef, Australia

Gardiners I. Long Island, NY USA
Sargasso Sea 33*11'N 65*15'W

Raritan Bay, Sandy Hook NJ USA
unknown

E. Equatorial Pacific Ocean
E. Equatorial Pacific Ocean
E. Equatorial Pacific Ocean

Oslofjord, North Sea
Sargasso Sea 32*10'N 64*30'W

unknown
Woods Hole, MA USA

Gardiner Bay, Galapagos I.
N. Pacific 49036'N 140'37'W

Sargasso Sea 33044.9'N 67*29.8'W

a Determination was by HPLC (Doucette et al 1996).

Flva

+

+

+
+

habitat
N
N
N
N
O
N

0

NOONO

N
N
O
O

I



TABLE II: List of organisms used in this study to test reactivity of antibodies
raised against flavodoxin and ferredoxin from Thalassiosira weissflogii. A
"+" indicates positive reaction with the antibody.

organism anti-Fd anti-Fly
Alexandrium fundyense
Amphidinium carterae
Symbiodinium microadriaticum
Thalassiosira weissflogii + +
Thalassiosira oceanica - +
Minutocellus polymorphus -
Chaetoceros gracilis - +
EqPac pennate diatom clone 7-47B -
EqPac pennate diatom clone 10-40A -
EqPac pennate diatom clone A3-30 - +
Emiliania huxleyi - -
Emiliania huxleyi - -
Syracosphaera elongata - -
Pleurochrysis carterae - -
Phaeocystis sp. - -
Chrysochromulina ericina - -
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FIGURE 1 - UV-visible absorption spectra of (A) ferredoxmn and (B) flavodoxin
from Thalassiosira weissflog~ii, for comparison with the spectra in Figure 2.
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FIGURE 3 - Bioassay results from iron-limited cultures of species that do not
express flavodoxin. Culture aliquots removed on the day of harvest were
amended with either Fe (@), all nutrients except Fe (1), or no addition (0) as a
control. Growth was monitored by fluorescence. (A) Syracosphaera elongata
(B) Pleurochrysis carterae (C) Minutocellus polymorphus (D) Alexandrium
fundyense.
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FIGURE 4 - Results of Western blots challenged with antiserum raised against
ferredoxin from Thalassiosira weissflogii. Each lane contains 30pg of total
protein from: (A) Thalassiosira weissflogii, (B) Minutocellus polymorphus,
(C) clone 7-47B, (D) clone A3-30, (E) clone 10-40A, (F) Thalassiosira oceanica,
(G) Chaetoceros gracilis, (H) Alexandrium fundyense, (I) Symbiodinium
microadriaticum, (J) Amphidinium carterae, (K) Emiliania huxleyi CCMP370,
(L) Phaeocystis CCMP1528, (M) Chrysochromulina ericina, (N) Syracosphaera
elongata, (0) Pleurochrysis carterae, Unlabeled lanes - molecular weight
standards. Positive reactions are indicated with *.
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FIGURE 5 - Results of Western blots challenged with antiserum raised against
flavodoxin from Thalassiosira weissflogii, as in Figure II, except (#)150 ng of
purified Thalassiosira weissflogii flavodoxin.
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Abstract

Both flavodoxin and the ferredoxin:flavodoxin ratio have been

proposed as molecular markers of iron stress. While flavodoxin induction is

a common response to iron stress in marine phytoplankton, little else is

known about its regulation. This study addresses the potential for both direct

and indirect regulation of ferredoxin and flavodoxin by iron and other

environmental factors. The marine centric diatom Thalassiosira weissflogii

was grown in nutrient- or light-deficient batch culture to determine the

effects of ecologically relevant limiting factors on flavodoxin expression. In T.

weissflogii, flavodoxin is induced specifically by iron stress, and not by nitrate,

phosphate, silicate, zinc or light deficiency. This insensitivity to other

limiting factors makes it an excellent choice as a diagnostic of iron limitation.

The ability of N substrate to modulate ferredoxin and flavodoxin

abundance via changes in intracellular iron requirements was also examined

using T. weissflogii grown over a range of limiting iron concentrations with

either nitrate or ammonium as a nitrogen source. These results show no

evidence of indirect regulation of ferredoxin/flavodoxin abundance (Fd

index) by N substrate. The data describe, nonetheless, the relationship

between Fd index and growth rate, which is composed of two distinct regions.

In the first region, at low growth rates, ferredoxin is undetectable and the Fd

index is uniformly zero. In the second region, at moderate-to-high growth

rates (5 5 -90%Rmax), ferredoxin and flavodoxin co-occur in the cells. The

substitution of flavodoxin for ferredoxin is a gradual process, not a simple

"on-or-off" response. In addition, flavodoxin expression is very sensitive to

iron limitation, occurring even at relatively high growth rates (80-90% Lmax)-



When ferredoxin and flavodoxin are both present, the Fd index varies with

relative growth rate. Thus, variation in the Fd index has the potential to

indicate changes in the severity of iron stress on varying temporal and spatial

scales.



Introduction

The potential for iron limitation of oceanic primary productivity has

generated considerable controversy since it was proposed by Martin and

colleagues (Martin & Fitzwater 1988, Martin et al. 1989, Martin 1990, Martin et

al. 1990, Martin et al. 1990). Resolution of this debate has been hindered in

part by a lack of suitable analytical techniques for the assessment of iron

limitation. The bulk of the evidence in support of iron limitation is derived

from nutrient addition bioassays, in bottles (e.g. Buma et al. 1991, Coale 1991)

and in the environment (Martin et al. 1994, Coale et al. 1996). The

interpretation of bottle bioassays is complicated by the potential for

contamination and confinement effects (e.g. Venrick et al. 1977, Cullen 1991)

and mesoscale enrichments are expensive and logistically difficult. The

methodological problems associated with these methods could be

circumvented through the use of a diagnostic indicator - a specific cellular

response that is directly regulated by iron availability. Such an indicator

would allow rapid diagnosis of iron limitation without manipulation of the

natural community.

Both the flavodoxin and/or ferredoxin proteins have been proposed as

markers of iron limitation (LaRoche et al. 1995, Doucette et al. 1996). Under

conditions of iron stress cells are able to functionally replace ferredoxin, an

abundant iron-sulfur redox protein, with flavodoxin, which contains no iron.

This response is widespread among the freshwater algae, in which it has been

studied for decades (e.g. Smillie 1965, Zumft & Spiller 1971, Peleato et al. 1994).

Flavodoxin induction has been shown to occur in marine phytoplankton as

well (LaRoche et al. 1993, LaRoche et al. 1995, Doucette et al. 1996). This



adaptation appears to be a common response to iron stress across algal classes,

making it a promising candidate as a molecular assay of iron limitation (see

Chapter 1). To be useful as a diagnostic, however, the response must be

regulated uniquely by changes in iron availability. Sensitivity to other factors,

such as nutrients or light, would invalidate their intended use in studies of

iron limitation in the environment.

To date, the study of flavodoxin regulation in marine algae has

primarily concerned its response to iron (LaRoche et al. 1993, LaRoche et al.

1995, Chapter 1). It has been demonstrated that neither nitrogen nor

phosphorous limitation induces flavodoxin expression in the marine diatom

Phaeodactylum tricornutum (LaRoche et al. 1993). That study, however,

represents the sum total of the present knowledge of non-iron flavodoxin

regulation in marine phytoplankton. Regulation of ferredoxin and

flavodoxin by factors other than iron has been observed in other organisms.

For example, light is able to modulate ferredoxin gene expression in both pea

and wheat (Dobres et al. 1987, Bringloe et al. 1995). In the freshwater

cyanobacterium Synechocystis, flavodoxin seems to function as a general

stress response, accumulating under conditions of salt stress, heat shock and

iron limitation (Fulda & Hagemann 1995).

In many potentially iron-limited regions of the ocean, there is also the

possibility of limitation by other factors. Nitrogen or phosphorous stress is

unlikely in the high-nutrient-low-chlorophyll areas of the ocean where iron

limitation is suspected, but it may be a factor in coastal regions where

macronutrient levels are often low and iron availability may vary on both

temporal and spatial scales (Wells et al. 1991). Another macronutrient,



silicate, may be the 'next' limiting nutrient for diatoms in iron-limited areas,

whose growth seems to be favored by iron enrichment (Coale et al. 1996).

Oceanic regions with low surface water iron concentrations also typically

exhibit low levels of other biologically important micronutrients such as zinc

and manganese (Bruland et al. 1978, Landing & Bruland 1980, Gordon et al.

1982). In the Southern Ocean, where iron limitation is one possible

explanation for persistent HNLC conditions, light is also thought to constrain

primary production (de Baar et al. 1990, Mitchell et al. 1991). Induction of

flavodoxin by any of the aforementioned factors would generate "false

positives" for iron limitation. To be a truly diagnostic indicator, a marker

must be able to discriminate between iron and other types of limitation.

In addition to the direct effect of various limiting factors, there is

potential for indirect regulation of ferredoxin and flavodoxin expression.

Cellular ferredoxin and flavodoxin content is undoubtedly linked to the cell's

iron quota, which is in turn thought to be affected by the nitrogen source

available for growth. Theoretical calculations by Raven (1988) predict that

nitrate assimilation requires 1.6 times more cellular iron than ammonium

utilization. Variations in cellular iron requirements for growth on different

N substrates may then be reflected in the relative abundance of ferredoxin

and flavodoxin. This is the case for the freshwater cyanobacterium Anabaena

7120 which exhibits varying flavodoxin:ferredoxin ratios when grown on

different nitrogen sources at a constant iron concentration (Fish & Sanders-

Loehr 1987). Such a response could be likened to a "co-limitation" by iron

and nitrogen, such that low iron availability would restrict nitrate use.



The goal of this study was to determine the effect of nutrients and light

upon ferredoxin and flavodoxin regulation, utilizing Thalassiosira weissflogii

as a model. The data presented here are derived from two related studies.

The first, a "Nutrient Limitation" study, measured the ferredoxin and

flavodoxin content of T. weissflogii grown in batch culture under non-

limited conditions and nitrate-, phosphate-, silicate-, iron-, light- or zinc-

deficient conditions. The second study ("N/Fe Interaction") explored the

potential indirect effect of nitrogen substrate on the relative ferredoxin

/flavodoxin content of T. weissflogii grown over a range of iron levels. The

two analyses together comprise the first comprehensive study of both direct

and indirect regulation of ferredoxin and flavodoxin expression by

ecologically relevant limiting factors.

Materials and Methods

Cultures The marine eukaryotic phytoplankton species used for all

experiments in this study was the centric diatom Thalassiosira weissflogii

(Grun.) Fryxell et Hasle (clone ACTIN).

Growth of phytoplankton - Nutrient limitation All Thalassiosira

weissflogii cultures, except for zinc-limited cells, were grown in 0.2 gM

filtered Vineyard Sound (MA, USA) seawater (31%o) enriched with ESNW

nutrients .according to Harrison et al. (1980) with several modifications.

Na2HPO4 was substituted in equimolar amounts for Na2glyceroPO4. and

selenium (as H2SeO3) was added to a final concentration of 10-8M. Trace

metal additions were made according to Brand et al. (1983). Seawater was

sterilized by autoclaving then enriched with sterile nutrients. Macronutrient



(nitrate, phosphate and silicate) stocks were sterilized by autoclaving while

iron, trace metal, selenium, EDTA and vitamin stocks were sterile-filtered (0.2

jim).

Nitrate-, phosphate-, silicate- and light-deficient cultures all contained

10 giM Fe and 100 gM EDTA. The control culture was enriched with 50 pIM Fe

and 500 giM EDTA and iron-limited cultures contained 100 nM Fe and 1 jM

EDTA. Nitrate-, phosphate- and silicate-deficient cultures contained the

limiting nutrient at 1/50 the concentration of full medium, 11.0 RM, 0.42 liM

and 2.11 pM respectively. Zinc-limited cultures were not grown by the

authors, but were provided by Dr. Jenny Lee as cells harvested onto 3 jim

polycarbonate filters and frozen in liquid nitrogen. Zinc-limited cells were

grown in Aquil medium (Price et al. 1989) with a calculated pZn=11.6.

Cultures (2 1 volume) were grown in acid-washed glass or

polycarbonate 2.8 1 Fernbach flasks. They were maintained at 200C on a 14:10

hour light:dark cycle at an irradiance of ca 175 RiE m-2 s-1 as measured inside

the culture flasks with a photometer (Biospherical Instruments model QSP-

100). Light-limited cultures were covered with three layers of neutral density

screening, resulting in a measured irradiance of ca 20 RE m-2 s-1 .

Control, Fe-limited and light-limited cultures were harvested during

the exponential phase of growth. Nitrogen-, phosphorous- and silicate-

deficient cultures were allowed to reach stationary phase before harvest. At

the appropriate stage, subsamples were removed for chlorophyll

determinations and cell counts. The remaining volume was collected onto 3

jm polycarbonate filters (47 mm diameter), except for approximately 100 ml.

This volume was used as an inoculum for the next culture, which was



initiated by the addition of two liters of fresh culture medium. Three

sequential cultures were grown in this manner for all treatments except the

control culture which was grown once. After harvest, cells were frozen at

-80 0C until analysis. While triplicate cultures were grown for all treatments

except the control, data from only one round of culturing is presented here.

Growth rates - Nutrient limitation Cell densities were determined by

four replicate microscopic counts of Utermohl's preserved samples in a

Fuchs-Rosenthal hemacytometer. Growth rates during exponential phase

were calculated from linear regressions of the natural log of cell density

versus time.

Chlorophyll a determinations - Nutrient limitation Chl a was

measured on triplicate samples per flask. Cells were collected by gentle

filtration onto Millipore SSWP membranes (3 pm, 25 mm diameter) and

frozen in liquid nitrogen until analysis. Filters were extracted in 100%

acetone for 24 hours at 40C in the dark. Before measurement, samples were

diluted to 90% acetone and allowed to warm to room temperature.

Chlorophyll was measured fluorometrically using a Turner Designs

fluorometer (model 10-AU) that had been calibrated with pure chlorophyll a

(Sigma) using the extinction coefficients from Jeffrey and Humphrey (1975).

Growth of phytoplankton - N/Fe interaction Cultures of Thalassiosira

weissflogii were grown by Dr. Neil Price's laboratory, using the procedure

detailed in Maldonado and Price (1996). Cultures were grown in the artificial

culture medium Aquil (Morel et al. 1979, Price et al. 1989) with minor

modifications. Media contained standard enrichments of phosphate and

silicate, with either 50 pM nitrate or ammonium. Premixed Fe-EDTA (1:1)



was added separately at a range of concentrations from 10 nM to 8.4 gM, to

achieve free ferric ion concentrations of 10-21.1 M (pFe 21.1) to 10-18 -8 M (pFe

18.8). Synthetic ocean water was sterilized by microwaving in acid-washed

teflon bottles (Keller et al. 1988), and enriched with sterile nutrients. Trace-

metal-clean technique was employed for all cultures, as outlined by Price et al.

(1989).

Cultures were grown in acid-washed polycarbonate flasks. They were

maintained at 200C under continuous irradiance of 200 gE m-2 s-1, using

semi-continuous batch culture technique described by Brand et al. (1981).

Although sterile techniques were used to minimize bacterial contamination,

the cultures were not axenic. Cells were harvested by filtration, stored in

liquid nitrogen and subsequently lyophilized prior to analysis.

Growth rates - N/Fe interaction Growth rates were determined by

measurements of in vivo fluorescence using a Turner Designs fluorometer

(model 10-AU). Growth rates were calculated from linear regressions of the

natural log of in vivo fluorescence versus time. Cultures were considered to

be acclimated when growth rates of successive transfers did not vary by more

than 10%.

Protein extraction Initially, cell extracts were prepared by an acetone

precipitation technique. Briefly, cells were washed from filters using

extraction buffer and lysed by the addition of 9 volumes of acetone. The

resultant acetone precipitate was collected by centrifugation, dried and then

resuspended in extraction buffer. The resulting aqueous extract was analyzed

by HPLC. Half of the N/Fe interaction samples were extracted using this

method.
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The remaining N/Fe samples and all of the nutrient limitation

samples were extracted using a more simplified method. Cells and their

filters were placed in a 2 ml tube with extraction buffer and zirconium beads.

Cells were ruptured by three, fifty second cycles in a mini-beadbeater (Biospec

Instruments, Bartlesville, OK, USA). The cell lysate was centrifuged for one

hour at 105,000 x g and the supernatant was filtered (0.45 gim) and injected

into the HPLC. Prior to use of the simplified extraction method, it was

compared to the acetone powder method using laboratory cultures of

Thalassiosira weissflogii. The extraction efficiency using the simplified

method is slightly better, and the same ratio of ferredoxin:flavodoxin is

obtained from the two methods when using identical samples (data not

shown).

HPLC of ferredoxin and flavodoxin All cultures were analyzed using a

previously described HPLC method (Doucette et al. 1996). Ferredoxin and

flavodoxin in cell extracts were separated by anion-exchange HPLC. Detection

was performed with a Hewlett-Packard model 1050 diode array detector

(Hewlett-Packard Co., Andover, MA, USA), which also allowed identification

of the proteins by their absorption spectra. Quantification of peak areas was

performed by HP ChemStation software (Hewlett-Packard) in autointegration

mode. The zinc-limited samples, which were analyzed prior to the other

cultures, are one exception to this procedure. The same chromatographic

method was employed, but a Hewlett-Packard Model 1040A diode array

detector was used instead of the model 1050. The model 1040A records

wavelength data only in the range from 250 nm to 600 nm, whereas the 1050

covers the range from 200 nm to 600 nm. This is reflected in Figure 4, where

__



the spectrum of the chromatographic peak of the zinc sample begins at 250

nm. The data collected by the 1040A was analyzed using the HP ChemStation

program, thus quantification of peak areas was by the same method as for the

other samples.

Results

Growth of cells in light- or nutrient-deficient culture

Growth curves for all cultures are displayed in Figure 1. For the

nutrient- or light-deficient cultures (Fig. 1B-F), data from the control culture

are included for comparison. The control culture was grown in complete

medium and harvested during mid-exponential phase and was considered to

be non-limited. The low-light (Fig. 1E) and low-iron (Fig. 1F) cultures

exhibited slowed but exponential growth rates relative to the control (R=0.00 9,

0.023 and 0.038 hr 1, respectively). The low-nitrate (Fig. 1B), -phosphate (Fig.

1C) and -silicate (Fig. 1D) cultures exhibited reduced final cell densities as

compared to the control, which was harvested in exponential stage before it

achieved maximum density. In both the N and P starved cultures, a decrease

in specific growth rates during exponential phase relative to the control was

also observed (p=0.0 19, 0.019 and 0.038 hr 1, respectively). The Si-starved

culture, however, grew slightly faster than the control during exponential

(pg=0.0 42 vs. 0.038 hr 1) although the final cell yields were markedly lower.

Effect of nutrients and light on cellular chlorophyll levels

Nutrient or light deficiency also affected the chlorophyll content of

Thalassiosira weissflogii (Figure 2). Chlorosis was evident in nitrate-,



phosphate- and iron-deficient cultures, whose cellular chlorophyll content

was only 29%, 70% and 59% of the level in control cells, respectively. In

contrast, cellular pigment content of the light-limited and silicate-starved

cultures increased to 170% and 260% of the control level, respectively.

Effect of nutrients and light on ferredoxin and flavodoxin expression

All cultures exhibited only one peak on their chromatograms that

could be attributed to either ferredoxin or flavodoxin (Figure 4A-G). Peaks

were identified by their absorption spectra, which are displayed beside the

corresponding chromatograms in Figure 4. For reference, absorbance spectra

of ferredoxin and flavodoxin from Thalassiosira weissflogii are shown in

Figure 3. Flavodoxin was present only in iron-limited cells, and was not

expressed in response to limitation by nitrate, phosphate, silicate, light or

zinc.

Influence of N substrate on ferredoxin and flavodoxin expression

In a related experiment, ferredoxin and flavodoxin abundance was

measured in cells grown over a range of iron concentrations using either

nitrate or ammonium exclusively as a nitrogen source (Figure 5A). Nitrogen

was added at sufficient levels (50 pM), so that growth rate was controlled by

iron availability. The "Fd index" is a modification of the equation 1 of

Doucette et al. (1996), which relates the flavodoxin abundance to the total

ferredoxin/flavodoxin pool on the basis of percentages. The Fd index used

here expresses the proportion of ferredoxin in the ferredoxin/flavodoxin pool

and varies from 1 (only ferredoxin, no flavodoxin) to 0 (only flavodoxin, no

__ __



ferredoxin). The Fd index is shown as a function of growth rate, which is

expressed as a percentage of the known maximum rate and serves as a proxy

for iron availability.

At the highest growth rate examined here, 93% of maximum, cells

express only ferredoxin (Fd index = 1). As iron availability and therefore

growth rate decreases, cellular ferredoxin content begins to decrease relative

to flavodoxin (0 < Fd index < 1). Eventually, ferredoxin expression ceases and

cells contain only flavodoxin (Fd index = 0). The relationship between Fd

index and growth rate is composed of two different regions. In the first

region, below 55% of maximum growth rate, only flavodoxin is expressed and

the Fd index is uniformly zero. In the second region, at growth rates higher

than 55% of maximum, ferredoxin and flavodoxin are both present in the

cells. In this second region, the Fd index increases as relative growth rate (and

iron availability) increases, and is therefore inversely related to the severity of

iron stress.

The results for the ammonium- and nitrate-grown cultures were

examined separately to assess the effect of N substrate on ferredoxin and

flavodoxin expression (Figure 5A). The data points for nitrate- and

ammonium-grown cells do not separate into two distinct groups. In fact,

there is considerable overlap in the region between 55-65% tmax, where many

of the nitrate and ammonium points cluster together. The data do not

therefore provide evidence of N substrate-dependent differences in the

ferredoxin/flavodoxin response.



Discussion

Both flavodoxin alone (LaRoche et al. 1995, LaRoche et al. 1996) and the

cellular ratio of ferredoxin:flavodoxin (Doucette et al. 1996, Chapter 1) have

been proposed as molecular markers of iron limitation in marine

phytoplankton. The effect of iron on expression of these two proteins is well

established, but little else is known regarding their regulation. Before this

system can be used confidently as an indicator in the field, it is essential to

determine that it is regulated uniquely by iron. While it may be impractical

to examine all possible limiting factors for their effect on ferredoxin and

flavodoxin expression, it is advisable to test at least those factors which may

be ecologically relevant.

This study examines the influence of several common limiting factors

- nitrogen, phosphorous, silicate, zinc and light - on ferredoxin and

flavodoxin expression. Regulation was also examined in nitrate- and

ammonium-grown cells over a broad range of limiting iron levels, to

investigate the potential modulating effect of N substrate on

ferredoxin/flavodoxin content. These data describe the relationship between

growth limitation by iron and relative cellular abundance of ferredoxin and

flavodoxin. Together, this information provides a comprehensive picture of

ferredoxin and flavodoxin regulation by various nutrients and light,

information that is essential if we are to confirm their use as diagnostics of

iron limitation in natural populations.



Nutrient- and light- deficient growth

Although all cultures used during the nutrient limitation study were

technically batch cultures, there are subtle but significant differences in the

manner in which limitation was achieved. The control, nitrogen-,

phosphorous- and silicate-deficient cultures were true batch cultures. In such

cultures cells will grow exponentially until the medium is depleted of the

nutrient present at the lowest relative concentration, at which point growth

ceases. It is therefore the final biomass yield of the culture that is determined

by the quantity of limiting nutrient initially added to the medium. During

early-to-mid exponential growth, all nutrients should be saturating and cells

should be essentially "unlimited". Once they reach stationary phase,

however, they have been effectively starved of the limiting nutrient.

This type of growth was evident in the control (Fig. 1A), N- (Fig. 1B), P-

(Fig. 1C) and Si-deficient (Fig. 1D) cultures. All four exhibited an exponential

phase of growth of varying duration. The control culture was harvested in

mid-exponential, before it became limited for any particular factor but also

before it reached maximum cell density. In the N-, P- and Si-deficient

cultures, the exponential period was followed by a plateau where cell density

did not change. For all three, this biomass level was below that achieved by

the control culture, a hallmark of nutrient limitation in batch culture. The

exponential growth rates for N- and P-starved cultures were also lower than

the control culture, which suggests that the cells experienced some limitation

by low nutrient levels throughout their growth. The cultures were harvested

for analysis during stationary phase, however, and are therefore considered to

be nutrient-starved.



The situation for the iron-, zinc-, and light-limited cultures is

somewhat different. In all of these cultures it is not the absolute quantity of

the limiting nutrient, but its rate of supply, that affects growth. In the light-

limited culture, the irradiance is controlled by the use of neutral density

screening. Growth is therefore limited by the rate at which cells can acquire

photons. In trace-metal-buffered cultures, metal availability is controlled

through the use of chelators. A relatively constant supply of metal can be

maintained in the culture through chemical equilibrium between free metal,

free chelator and the metal-chelator complex. The magnitude of the supply is

determined by relative chelator and metal concentrations.

Under conditions such as these, cells are able to grow exponentially but

at a reduced level dictated by the supply rate of the limiting nutrient. In a

batch culture, the cells will eventually run out of a particular nutrient and

cease growing. In exponential phase, during which these cells were

harvested, growth approximates that of a continuous culture. This type of

growth is illustrated by the light- (Fig. 1E) and iron-limited (Fig. 1F) cultures.

Their exponential growth rates are lower than that of the control, which is

indicative of light or iron limitation.

Chlorophyll content of limited/starved cells

Further evidence of limitation or starvation is provided by cellular

chlorophyll measurements (Figure 2). Chlorosis is a common effect of

nitrogen, phosphorous and iron stress (e.g. Glover 1977, Laws & Bannister

1980), and the N-, P-, and Fe-deficient cells all contained less chlorophyll than



the control. The low-light grown cells exhibited increased pigment content, a

characteristic adaptation to limiting light levels (e.g. Laws & Bannister 1980).

The highest chlorophyll per cell, however, was measured in the Si-

starved cells, which also showed striking morphological changes evident

upon microscopic examination, becoming elongated and visibly darker.

Unfortunately, no cell volume data was collected for the Si-starved cells. The

dramatically increased chlorophyll content is likely due to a combination of

increased cell size due to elongation and increased cellular chlorophyll. This

is similar to the results reported by Harrison et al. (1977), who examined the

effect of silicate limitation in diatom chemostat cultures. They also observed

elongated cells with increased pigment content which resulted in elevated

chlorophyll per cell values. In their case, the thinning of the cells

compensated for the effects of elongation, resulting in a relatively unchanged

cell volume. The increased chlorophyll content of the low-silicate-grown

cells is thus consistent with silicate starvation.

Ferredoxin and flavodoxin content of limited/starved cells

The primary goal of this study was to determine if ferredoxin and

flavodoxin were regulated by any limiting factor other than iron. In

particular, we examined some common forms of limitation that cells are

likely to encounter in natural waters. It has been shown previously that

flavodoxin in Phaeodactylum tricornutum is not induced in response to

nitrogen or phosphorous starvation (LaRoche et al. 1993). This present study

provides an independent replication of those results for another species and

rI



extends our knowledge of ferredoxin and flavodoxin regulation to include

the effects of silicate-, zinc- and light-deficiency and nitrogen substrate.

The ferredoxin and flavodoxin content of cells grown under light or

nutrient deficiency as well as non-limiting conditions (control) were

determined using HPLC. Both ferredoxin and flavodoxin were identified by

their characteristic absorption spectra (Figure 3). The spectra allow

unambiguous identification of ferredoxin.and flavodoxin in spite of the slight

variation in the elution times of ferredoxin due to such factors as slight batch-

to-batch differences in buffer composition or variations in column packing.

The total range of the elution times is less than one minute, with the

exception of the zinc-limited sample. It was analyzed some months prior to

the other samples and exhibits a shifted elution time as well as a truncated

UV-visible spectrum (see Materials and Methods).

In all cases, only one chromatographic peak was observed during the

appropriate range of elution time (Fig. 4 A-G). In Figure 4, the UV-visible

absorption spectra of each HPLC peak is displayed beside its corresponding

chromatogram. Flavodoxin was observed only in iron-limited cells, and was

not induced in response to nitrate, phosphate, silicate, zinc or light stress.

The insensitivity of flavodoxin to other potential limiting factors makes it an

excellent candidate for a marker of iron limitation.

Effect of N substrate on relative ferredoxin/flavodoxin abundance

In addition to the examining the direct effects of alternative limiting

factors, this study was extended to include potential indirect regulation of

ferredoxin and flavodoxin expression by nitrogen substrate. Nitrate-grown



cells are thought to require more iron than those utilizing ammonium

(Raven 1988) and may compensate for this increased cellular demand

through changes in relative ferredoxin/flavodoxin content. To test this

hypothesis, ferredoxin and flavodoxin abundances were measured in cells

that had been grown over a range of iron levels and provided with either

nitrate or ammonium exclusively as a nitrogen source (Figure 5).

Relative ferredoxin/flavodoxin abundance is expressed in Figure 5 as

the Fd index, defined as the proportion of ferredoxin in the combined

ferredoxin+flavodoxin pool:

Fd index = [ferredoxin]/ [ferredoxin + flavodoxin]

This index is calculated from the integrated HPLC peak areas, which are

directly proportional to moles of ferredoxin or flavodoxin. The Fd index is

shown as a function of culture growth rate, expressed as a percentage of the

known maximum rate. When working with very low culture iron levels,

small amounts of contamination can have a large effect on medium iron

content. The culture growth rate is therefore a more accurate measure of the

amount of iron actually present in the culture, rather than moles of iron

added or calculated free ion activities. The growth rate is normalized to the

maximum observed growth rate, which is slightly different for nitrate-

(0.057-hr - 1) and ammonium- (0.058-hr -1) grown cells.

In Figure 5A, data from nitrate- and ammonium-grown cells is

displayed with different symbols, to highlight any potential differences

between the two N substrates. The data do not separate into clearly distinct

groups, and as such provide no evidence for modulation of cellular

ferredoxin/flavodoxin content by the nitrogen source used for growth.



Indeed, the recent results of Maldonado and Price (1996) suggest that this may

very well be the case. Their data indicate that nitrate-grown cells have

elevated cellular iron quotas but are able to compensate by acquiring more

iron. Thus, the cells seem to satisfy their increased iron demands through

uptake of extracellular iron rather than via reapportionment of internal iron

pools.

If the data from nitrate- and ammonium-grown cells are considered

together, the results provide a description of changes in cellular

ferredoxin/flavodoxin abundance in response to iron availability (Figure 5B).

Flavodoxin expression seems to be very sensitive to iron limitation,

occurring at relatively high growth rates (80-90% .Lmax). The sensitivity of

flavodoxin induction is in agreement with the recent results of McKay et al.,

who observe increases in flavodoxin-protein -1 when cells are only mildly

limited by iron (%gmax ~ 80%) (McKay et al. 1997). As growth limitation

increases, ferredoxin is replaced gradually by flavodoxin, not as a simple "on-

or-off' response.

The relationship between Fd index and growth rate in T. weissflogii is

composed of two distinct regions. In the first region, at very low relative

growth rates (i.e. severe iron stress) ferredoxin is undetectable and the Fd

index is uniformly zero. In the second region, at moderate to high relative

growth rates, ferredoxin and flavodoxin co-occur in the cells. In the latter

region the Fd index increases with increasing growth rate, and is therefore

inversely related to the severity of iron stress. Unfortunately, the data are

insufficient to define precisely the relationship between Fd index and iron

availability, e.g. linear, exponential, sigmoidal, etc. The ability to



mathematically describe such data would allow statistical testing of the

differences between nitrate- and ammonium-grown cells, an analysis that it

not presently possible. The shape of the Fd index/growth rate relationship

may also provide insight into possible cellular regulation mechanisms of

ferredoxin and flavodoxin expression. More data is needed, however, to

accurately describe the effect of iron availability on relative cellular

abundance of ferredoxin and flavodoxin..

The data presented here nonetheless support an inverse relationship

between Fd index and the severity of iron stress. Flavodoxin, used alone, can

detect the presence or absence of iron limitation. The combination of

flavodoxin and ferredoxin abundance measurements may extend the utility

of this system to the detection of changes in the severity of iron limitation.

Thus, variation in the Fd index may allow determination of both temporal

and spatial changes in the severity of iron stress e.g. over the course of a

phytoplankton bloom or on a transect from coastal to oceanic waters.
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FIGURE 3 - UV-visible absorbance spectra of (A) ferredoxin and (B)
flavodoxin from Thalassiosira weissflogii. In addition to the 280 nm
absorbance maximum common to all proteins, ferredoxin exhibits secondary
maxima at ca. 330 and 430 nm and a shoulder at 465 nm. Flavodoxin, in
contrast, has secondary maxima at ca. 365 and 465 nm, giving it a distinctive
"camel hump" appearance.
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Abstract

Substitution of the non-iron protein flavodoxin for the iron-sulfur

protein ferredoxin is an iron-stress response employed by a variety of

unicellular organisms, including many phytoplankton. The relative

abundance of these two proteins has been shown to vary with the severity of

growth limitation by iron in marine diatoms. The IronEx II experiment,

during which a 64 km2 patch of the equatorial Pacific ocean was enriched with

iron and monitored for several weeks, provided an unprecedented

opportunity to test both the ferredoxin-flavodoxin biomarker system and its

HPLC detection method in a well-characterized field situation. Large volume

(100-600 liter) phytoplankton samples were collected for analysis of

community ferredoxin and flavodoxin abundance using HPLC. In addition,

three pennate diatom species isolated from the fertilization-induced

phytoplankton bloom were used for follow-up laboratory experiments which

examined their iron physiology.

HPLC results track the growth of the fertilization-induced

phytoplankton bloom. Prior to enrichment, biomass levels were insufficient

to obtain any ferredoxin or flavodoxin signals. The first chromatographic

peaks were evident on the fifth day following enrichment, coincident with

large increases in chlorophyll concentrations. The same HPLC signal,

characterized by one large main chromatographic peak, persisted throughout

the experiment before it declined and eventually disappeared following the

last iron infusion, in parallel with declining chlorophyll concentrations in

the enriched patch. The primary chromatographic peak was identified as



flavodoxin by its absorption spectrum; there was no evidence of ferredoxin in

any of the samples.

Pennate diatom clones isolated from the fertilization-induced bloom

and grown in the laboratory retain the ability to make ferredoxin when iron-

replete and induce flavodoxin when iron-stressed. When iron-limited, they

are able to completely repress flavodoxin expression in about one day in

response to iron resupply. Thus, the absence of ferredoxin during IronEx II is

indicative of continuing iron limitation of the phytoplankton population

despite the increases in biomass and photosynthetic efficiency observed

during the experiment. The persistence of flavodoxin suggests that the iron

additions were insufficient to completely relieve iron limitation. These

results demonstrate the utility of the HPLC method for detection of

ferredoxin and flavodoxin in natural samples and the potential for use of the

ferredoxin-flavodoxin ratio as an indicator of iron stress in the field.



Introduction

Since Martin proposed the "iron hypothesis", considerable effort has

been invested in the study of the relationship between iron availability and

primary production (Martin 1990). Initial evidence for iron limitation of

phytoplankton growth was derived primarily from the results of shipboard

nutrient addition bottle bioassays (e.g. Buma et al. 1991, Coale 1991). More

recently, two mesoscale iron fertilization experiments performed in the

eastern equatorial Pacific provided direct proof of iron limitation of

production in that area (Martin et al. 1994, Coale et al. 1996). Interpretation of

bottle bioassay results is complicated by potential artifacts due to

manipulation and enclosure of the natural population (e.g. Venrick et al.

1977), and mesoscale enrichments are impractical and prohibitively

expensive. The difficulties inherent in these nutrient addition methods

illustrate the need for a sensitive test for iron limitation that does not entail

excessive manipulation or incubation of the phytoplankton community.

One of the most promising candidates for a specific assay of iron stress

is the ferredoxin/flavodoxin system of proteins (LaRoche et al. 1995, Doucette

et al. 1996). Under conditions -of iron stress, many organisms are able to

replace the iron-sulfur redox protein ferredoxin with it's non-iron-containing

functional equivalent, flavodoxin. Whereas this adaptation has been studied

in freshwater algae and bacteria for more than thirty years (Smillie 1965,

Zumft & Spiller 1971, Peleato et al. 1994), it has only recently been definitively

identified in marine phytoplankton (LaRoche et al. 1993, Doucette et al. 1996).

Results of laboratory studies of the ferredoxin/flavodoxin response

support its use as an indicator of iron stress. Induction of the flavodoxin



protein is a common response to iron limitation in a diversity of marine

phytoplankton (LaRoche et al. 1995, Chapter 1). Flavodoxin expression is also

specific to iron stress, observed only in iron-limited cells and not in those

growing under nitrate, phosphate, silicate, zinc or light stress (LaRoche et al.

1993, Chapter 2). Furthermore, flavodoxin protein expression is extremely

sensitive to iron limitation, evident in cells growing at only 10-20% less than

their maximum rate (Chapter 2). These characteristics make flavodoxin alone

an excellent diagnostic of the presence or absence of iron limitation, but the

comparative abundance of flavodoxin and ferredoxin together can potentially

indicate not only the presence but also the severity of iron stress. In

Thalassiosira weissflogii grown under iron-limiting conditions, the relative

proportion of ferredoxin and flavodoxin varies with the extent of growth

impairment by iron (Chapter 2).

The aforementioned laboratory studies aimed to characterize this

method for detection of iron limitation in natural waters. The true test of

this system, however, is its application in the environment. The use of

relative flavodoxin/ferredoxin abundance to assess temporal changes in iron

stress is not without precedent. Jones (1988) used fast protein liquid

chromatography (FPLC) to measure ferredoxin and flavodoxin in

Trichodesmium collected near Barbados using a plankton net. Increases in

the ferredoxin:flavodoxin ratio of this species tracked wind events associated

with increased aeolian dust inputs. The Trichodesmium samples used by

Jones were basically monospecific and could be collected in large quantities.

For routine use in the oceans, however, a technique must be able to measure



ferredoxin/flavodoxin content in much smaller quantities of phytoplankton

cells.

The IronEx II mesoscale iron enrichment experiment (Coale et al. 1996)

offered a matchless opportunity to perform such a test of our analysis and

detection methods for ferredoxin and flavodoxin. During the experiment, a

patch of the eastern equatorial Pacific Ocean was enriched with iron and

monitored for several weeks. Timing and magnitude of iron addition were

controlled, allowing direct correlation with changes in phytoplankton

physiology. The experimental patch was also intensively sampled for a

variety of physical, chemical and biological parameters, allowing comparison

of the ferredoxin/flavodoxin results with those obtained via other

independent methods.

During the experiment, large volume phytoplankton samples were

collected to monitor changes in the total community ferredoxin and

flavodoxin abundance. If the resident phytoplankton were indeed limited by

iron, iron addition was expected to stimulate growth with a corresponding

increase in the ferredoxin to flavodoxin ratio of the phytoplankton

community. Proteins were extracted from filters containing a mixed

phytoplankton assemblage (0.7-63 gm particles) and analyzed using an HPLC

detection method (Doucette et al. 1996). In addition, three pennate diatom

species isolated during IronEx II were used for follow-up laboratory

experiments which examined their iron physiology. The results of the IronEx

II analysis alone report the physiological response of the phytoplankton to

iron addition. The combined results of IronEx II and laboratory studies clarify
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the role of ferredoxin and flavodoxin in cellular adaptation to iron stress in

the environment.

Materials and Methods

Sample collection - IronEx II A detailed description of the IronEx II in

situ fertilization experiment and its results is given by Coale et al. (1996).

Briefly, a 75 km2 patch of the equatorial Pacific ocean near 3.5°S, 1040W was

enriched with iron and monitored for 19 days. Three separate iron infusions

of ca 2 nM, 1 nM and 1 nM occurred on days 0, 3 and 7 of the experiment,

respectively. For analysis of ferredoxin and flavodoxin, phytoplankton were

collected from large volumes of seawater (100-600 liters) using a pump and

filter system. An air-powered double-diaphragm pump (The Aro Corp.,

Bryan, OH, USA) was used to draw water through a length of reinforced PVC

tubing (0.75 inch I.D.) whose intake was positioned approximately four meters

away from the ship at a depth of about three meters. Seawater was pumped

through a 142 mm diameter filter stack (Oceanic Industries, Buzzards Bay,

MA, USA) containing a 63 im mesh Nitex screen and a Whatman GF/F glass

fiber filter in series. The glass fiber filters were then frozen in liquid nitrogen

for later analysis in the laboratory. For some samples, considerable

autotrophic biomass collected on the Nitex screens as well. In these cases, the

cells were. washed from the Nitex and frozen in liquid nitrogen as cell pellets.

Otherwise, the contents of the Nitex screens (mainly larger heterotrophs) was

discarded.

Protein extraction - IronEx II samples Filters were removed from

liquid nitrogen and allowed to thaw partially on ice. While still frozen, the
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glass fiber filters were minced with a razor blade. The minced filter was

placed in a fifty-ml chamber with 35 ml of ice-cold 0.5 mm diameter glass

beads, 25 ml of ice-cold chloroform and 25 ml of ice-cold extraction buffer (0.1

M sodium phosphate, 0.1 M NaC1, 1 mM EDTA, pH 7.0 with 13 mM beta-

mercaptoethanol, and 1 gg-ml-1 each pepstatin, leupeptin and aprotinin).

The filters were homogenized using a bead-beater (Bio-Spec Products,

Bartlesville, OK, USA) for two, one-minute cycles in an ice and water bath

with a one-minute cooling period in between. The filter slurry was

transferred to a Pyrex glass bottle and centrifuged for ten minutes at 2000 x g,

during which the organic and aqueous phases separated. After centrifugation,

the aqueous phase was removed and concentrated to approximately two

milliliters in a 3000 MW cutoff ultrafilter (Centricon-3, Amicon Inc., Woburn,

MA, USA). The concentrated samples were filtered (0.2 l•m) prior to analysis

by HPLC.

Ferredoxin and flavodoxin analysis Samples were analyzed using a

previously described HPLC method (Doucette et al. 1996). Ferredoxin and

flavodoxin in cell extracts were separated by anion-exchange HPLC. Detection

was performed with a Hewlett-Packard model 1050 diode array detector

(Hewlett-Packard Co., Andover, MA, USA), which also allowed identification

of the proteins by their absorption spectra (Figure 1). Quantification of peak

areas was.performed by HP ChemStation software (Hewlett-Packard) in

autointegration mode.

Pennate diatom isolates Three pennate diatom clones were isolated

from the iron-fertilization-induced bloom during IronEx II by E. Mann. They

were rendered clonal by D. Erdner via plating (ESNW seawater medium with
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1% agar) and single-cell isolations. They are identified here by their clone

numbers, A3-30, 10-40A and 7-47B, pending further taxonomic identification.

Iron-replete and -deplete culturing of diatom isolates Cultures were

grown in 0.2 pM filtered Vineyard Sound (MA, USA) seawater (31%o)

enriched with ESNW nutrients according to Harrison (1980) with several

modifications. Na2HPO4 was substituted in equimolar amounts for

Na2glyceroPO4. and selenium (as H2SeO3) was added to a final concentration

of 10-8 M. Trace metal additions were made according to Brand et al. (1983).

Seawater was autoclave sterilized then enriched with sterile nutrients.

Macronutrient (nitrate, phosphate and silicate) stocks were sterilized by

autoclaving while iron, trace metal, selenium, EDTA and vitamin stocks

were sterile-filtered (0.2 jim). Iron replete cultures contained 5 .M added Fe

and 50 .M EDTA. Iron-deplete cultures contained no added Fe and 1 pM

EDTA.

Cultures (2 1 volume) were grown in acid-washed polycarbonate 2.8 1

Fernbach flasks, maintained at 260C on a 14:10 hour light:dark cycle at an

irradiance of ca 200 iE m-2 s-1 as measured with a photometer (Biospherical

Instruments model QSP-100). Cells were harvested by filtration onto 3 pm

polycarbonate filters (47 mm diameter). Despite numerous attempts, it was

not possible to obtain growth rates from any of the pennate diatom clones, as

the cells formed large sticky aggregates that could not be dispersed.

Protein extraction - pennate diatom cultures The polycarbonate filters

containing the cells were minced and placed in a two-ml screw-capped

eppendorf tube with one ml of extraction buffer (recipe above) and ice-cold 0.5

mm diameter zirconium beads. Cells were lysed by three, fifty-second cycles
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in a mini-beadbeater (Bio-Spec Products, Bartlesville, OK, USA), and cooled

on ice for at least one minute between cycles. The cell lysate was centrifuged

for one hour at 105,000 x g and the resulting supernatant was filtered (0.45

gm) before analysis by HPLC as described above for the field samples.

Ferredoxin induction kinetics One of the three pennate diatom clones,

7-47B, was chosen for analysis of the time course of ferredoxin induction. A

one liter culture of clone 7-47B in iron-deplete medium (as described above)

was inoculated into nineteen liters of fresh iron-deplete medium in an acid-

washed glass carboy. The cells were allowed to acclimate for two days prior to

the start of the experiment. At time zero, 5 gM Fe and 50 gM EDTA were

added to the carboy. Samples for ferredoxin and flavodoxin analysis were

removed at six hour intervals for the next 48 hours, then again at 60 and 72

hours. Cells were harvested by filtration then extracted and analyzed by HPLC

as described above.

Results

Open ocean iron enrichment

Neither ferredoxin or flavodoxin could be detected in samples collected

prior to fertilization and outside of the iron-enriched patch during the

experiment. HPLC chromatograms of extracts from samples collected inside

the iron-fertilized patch are presented in Figure 2. During the first two days of

the experiment, following iron infusion #1, no ferredoxin or flavodoxin

peaks were evident. Identifiable protein signals emerged following the

second iron infusion and persisted through Day 14 of the enrichment.

Samples collected on Day 17 again show no chromatographic peaks.
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The chromatograms from in-patch samples are characterized by one

large peak accompanied by one to three much smaller peaks. This large

primary peak exhibited a consistent retention time between samples and

dominated the community profiles throughout the experiment. It was

identified as flavodoxin by comparison of its UV-visible absorption spectrum

(Figure 3) with the spectra of ferredoxin and flavodoxin from a marine

diatom (Figure 1). No ferredoxin signals were observed during the course of

the experiment.

Ferredoxin and flavodoxin in equatorial Pacific pennate diatom cultures

Three pennate diatom clones, A3-30, 10-40A and 7-47B, were isolated

from the iron-fertilization-induced phytoplankton bloom. All three isolates

were grown under iron-replete and -deplete conditions to assess their ability

to synthesize ferredoxin and flavodoxin. The three organisms express only

ferredoxin in high-iron medium and only flavodoxin in iron-deficient

culture (Figure 4).

Ferredoxin and flavodoxin kinetics in an equatorial Pacific pennate diatom

Iron was resupplied to an iron-limited culture of clone 7-47B to

determine the time required for synthesis of ferredoxin and suppression of

flavodoxin expression. Changes in relative ferredoxin and flavodoxin

abundance, expressed as the Fd index ([ferredoxin]/[ferredoxin + flavodoxin]) are

shown in Figure 5. At the time of iron resupply, the culture was moderately

iron-limited, with a Fd index of approximately 0.5. Over the next thirty

hours, the Fd index steadily increased until flavodoxin expression was
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completely absent (Fd index = 1). Flavodoxin was undetectable after 30 hours

of incubation.

Discussion

Laboratory studies suggest that relative cellular ferredoxin/flavodoxin

content, as measured by HPLC, is a sensitive and reliable indicator of iron

limitation in marine phytoplankton (Chapters 1 and 2). The IronEx II

mesoscale iron enrichment experiment provided an unprecedented

opportunity to test both this biomarker system and its HPLC detection

method in a well-characterized field situation. During IronEx II, HPLC

analysis was successfully used to monitor the iron nutritional status of the

phytoplankton community over the course of the experiment. Several

follow-up laboratory studies utilizing pennate diatom cultures isolated from

the fertilization-induced phytoplankton bloom further substantiate our

interpretation of the IronEx II data. The results of this analysis tell us not

only about the response of the phytoplankton community to iron

fertilization, but also about the adaptive role of the ferredoxin and flavodoxin

proteins in the environment.

HPLC of ferredoxin and flavodoxin in natural samples

The HPLC detection method worked well for samples collected from

the IronEx II phytoplankton bloom, provided that sufficient biomass could be

collected. Samples obtained prior to fertilization and outside of the patch

during the experiment were analyzed but showed no chromatographic peaks.

This complete lack of a signal indicates that the ferredoxin and/or flavodoxin
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levels in these samples were below the detection limits of the method, even

though 300-600 liters had been filtered for each. The detection limit for this

method is determined by the amount of protein that can be reliably identified

by its UV-visible absorption spectrum using the diode array detector. This

requires about 200 and 300 pmol of flavodoxin and ferredoxin, respectively,

although smaller amounts will yield detectable (but not identifiable) peaks.

Use of the absorption spectrum of a peak rather than retention time for

identification is preferable when analyzing mixed samples such as those from

IronEx II or in situations where no appropriate standards are available.

Large amounts of biomass are therefore needed to overcome the

detection limits of the instrument, a problem which is exacerbated by the

inefficiency of protein extraction from the filters. The glass fiber filters, which

allow the filtration of large volumes of seawater, also hinder cell breakage

and protein extraction. Calculations based on laboratory data for cellular

flavodoxin and ferredoxin content estimate that only about 5-10% of these

proteins were successfully extracted (see Appendix I). At first glance, it may

seem that the use of the HPLC technique for analysis of environmental

samples is hampered by the relative insensitivity of detection. However, its

utility could be easily be extended through improvements in extraction

techniques, reducing the required sample size by a factor of ten to twenty.

Ferredoxin and flavodoxin during IronEx II

The iron fertilization induced a "massive phytoplankton bloom" that

was dominated primarily by pennate diatoms (Coale et al. 1996). Thus, the

HPLC results are presumed to reflect the cellular response of these organisms.
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The HPLC data track the growth of the fertilization-induced phytoplankton

bloom. Peak chlorophyll concentrations in the experimental patch doubled

by Day 3, before increasing to more than ten times their initial value on Day 5.

Values remained elevated and peaked on Day 9, then declined to about twice

their initial concentration before subsiding to background levels on Day 17

(Coale et al. 1996). Protein peaks in the HPLC chromatograms show a similar

pattern (Figure 2). The first two in-patch samples were below the detection

limit because phytoplankton biomass was still too low. The first identifiable

peaks appeared on Day 5, coincident with huge increases in chlorophyll

concentrations. A large signal persisted throughout the experiment, but then,

like chlorophyll, declined then disappeared between Days 14 and 17.

The chromatograms from in-patch samples are characterized by one

large main peak, identified as flavodoxin by its absorption spectrum (Figure

3). There is no clear evidence of ferredoxin induction in any of the samples.

This result is somewhat unexpected, as we anticipated that ferredoxin would

be resynthesized when the iron-starved cells were supplied with iron. There

are several potential explanations for the observed lack of ferredoxin during

the IronEx II enrichment despite the tremendous increase in biomass

generated by fertilization:

1) ferredoxin may not be extractable or detectable in natural communities

2) the endemic phytoplankton, having evolved in a chronically low-iron

environment, may lack the ability to make ferredoxin

3) there was insufficient time for ferredoxin resynthesis

4) there was no significant induction of ferredoxin despite iron addition

Each of these possibilities is explored below.
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HPLC detection of ferredoxin in natural samples

It is possible that ferredoxin, unlike flavodoxin, is difficult to extract

from natural samples. Alternatively, it may be unstable once isolated and

thus not detectable. This is not the case, however, as ferredoxin has been

observed in both estuarine and coastal marine phytoplankton using this same

HPLC technique (Figure 6).

Ferredoxin and flavodoxin in equatorial Pacific pennate diatoms

Several pennate diatom clones isolated from the IronEx II bloom were

cultured under iron-replete and -deplete conditions to assess their ability to

synthesize ferredoxin and flavodoxin (Figure 4). Ferredoxin expression was

evident in all three species when grown in high-iron medium. When iron-

limited, all of the organisms expressed only flavodoxin. These results are

consistent with those obtained from a number of other marine

phytoplankton (see Chapter 1). Flavodoxin expression is somewhat variable

amongst species, but all marine phytoplankton species examined to date are

able to express ferredoxin. Thus, the lack of ferredoxin induction during

IronEx II cannot be attributed to the inability of the native phytoplankton to

synthesize ferredoxin.

Kinetics of ferredoxin and flavodoxin protein expression

One of the three diatom isolates, clone 7-47B, was used to determine

the time-scale in which cells can alter their ferredoxin and flavodoxin

expression. Iron was resupplied to an iron limited culture of clone 7-47B and

its relative ferredoxin and flavodoxin content was measured every six hours
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afterward using HPLC. Within thirty hours of iron addition, this organism

was able to up-regulate its ferredoxin synthesis and degrade any residual

flavodoxin (Figure 5). These findings are consistent with the results of

LaRoche et al (1995), who find that natural populations of diatoms can switch

on flavodoxin synthesis in about a day . Thus, the IronEx II experiment,

which was monitored for nineteen days, provided ample time for cells to

respond to iron addition by modifying their protein expression.

Absence of ferredoxin induction during IronEx II

The final, and most plausible, explanation for the absence of ferredoxin

expression during IronEx II is that the cells simply did not synthesize

ferredoxin to any significant degree. Although no ferredoxin peaks were

identified in any of the samples, it is possible that ferredoxin was present

below the identification limit of about 300 pmol per sample. The largest

IronEx II sample analyzed contained the biomass from 1063 liters of water

collected during the height of the phytoplankton bloom (chromatogram not

shown). The area of its flavodoxin peak corresponds to approximately 1100

pmol of flavodoxin (using a standard curve for flavodoxin from Chlorella

fusca). Thus, during IronEx II, there was less than three molecules of

ferredoxin for every eleven molecules of flavodoxin. If ferredoxin was

present, it was at an extremely low level.

Persistence of iron limitation during IronEx II

There is no doubt that phytoplankton growth in the equatorial Pacific

is limited by iron, based upon the massive biological response to iron

110



fertilization (Coale et al. 1996). The biochemical data presented here support

this conclusion, but also indicate that the iron addition was insufficient to

completely relieve physiological iron limitation. The presence of flavodoxin

has been shown to be a sensitive and specific indicator of iron limitation (see

Chapters 1 and 2). Flavodoxin expression in the absence of ferredoxin is

symptomatic of severe iron limitation, a conclusion that is consistent with

the relatively low growth rates observed during the experiment. From the

results of dilution experiments, Constantinou et al. (1996) calculated a

maximal diatom growth rate during IronEx II of 1.8 divisions-day- 1. This is

slow relative to the 3.3 divisions-day-1 measured by Fryxell and Kaczmarska

(1994) for similar pennate diatoms in iron enrichment bottles.

The apparent contradiction between the lack of ferredoxin resynthesis

and the substantial biological response observed during IronEx II emphasizes

the role of ferredoxin and flavodoxin in cellular adaptation to iron stress.

Flavodoxin substitution provides a significant decrement in cellular iron

requirements. Iron contained in ferredoxin may account for approximately

30-40% of the Fe quota of an iron replete Thalassiosira weissflogii cell

(Appendix II). Thus, replacement of ferredoxin with flavodoxin allows cells

to easily and significantly lower their iron requirements. For diatoms, which

exhibit extremely high maximum growth rates, utilization of flavodoxin

allows rapid growth under sub-optimal iron supply.

Cellular ferredoxin and flavodoxin content is also extremely sensitive

to iron stress. In Thalassiosira weissflogii, flavodoxin synthesis is induced

when cells are only mildly limited by iron. Ferredoxin content decreases and

flavodoxin levels rise when cells are grown at 90% of their maximum rate

111



(Chapter 2). Thus, ferredoxin may be one of the first cellular components to

respond to iron limitation, representing an internal labile iron pool for

phytoplankton. Conversely, it may be one of the last components to be

reconstituted when iron is resupplied. More essential compounds such as

light harvesting pigments and photosynthetic reaction centers, which do not

have equivalent substitutes, are apparently resynthesized before ferredoxin.

This is evident from the increases in cellular chlorophyll content (Coale et al.

1996) and photochemical efficiency (Behrenfeld et al. 1996) observed during

IronEx II in the absence of ferredoxin induction.

The results presented here also indicate that the adaptive role of

flavodoxin that has been observed in the laboratory is relevant to conditions

in natural waters. Flavodoxin expression is an extremely sensitive indicator

of iron limitation, responding immediately when iron availability drops

below that required for optimum growth. This may be a moot point for

populations in areas such as the Equatorial Pacific; it is unlikely that they

receive iron inputs that are even a fraction of that required for fully replete

growth. The IronEx II iron additions of 2, 1 and 1 nM were slightly more than

what would be expected from natural inputs, which suggests that organisms

in the study area may always be reliant upon flavodoxin. For these

organisms, flavodoxin substitution is an essential adaptation that allows

them to persist in iron-poor environments, respond rapidly to periodic

inputs, and grow quickly on very small amounts of iron.
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FIGURE 1 - UV-visible absorption spectra of (A) ferredoxin and (B) flavodoxin
from the marine diatom Thalassiosira weissflogii. These spectra are
representative of those obtained from ferredoxin and flavodoxin in a variety
of marine eukaryotic phytoplankton.
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FIGURE 2 - HPLC chromatograms of samples collected in the IronEx II iron-
enriched experimental patch. Collection date is given as days after the first
iron infusion. On Day 6, two samples were collected, the first at dawn and the
second at dusk. On Day 14, two samples were again collected, one before
dawn and another at mid-morning. Ferredoxin and flavodoxin from marine
phytoplankton elute between 25-30 minutes in this system, and the
chromatograms have been formatted to cover the relevant temporal region.
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FIGURE 3 - Representative spectrum of the major peak in the IronEx II
chromatograms shown (A) full scale and (B) enlarged to show features in the
300-600 nm range. This component is clearly identified as flavodoxin (see
Figure 1).
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FIGURE 4 - UV-visible absorption spectra from HPLC analysis of pennate
diatom clones (A) 10-40A, (B) 7-47B and (C) A3-30 grown under iron-replete
(+Fe) and -deplete (-Fe) conditions.
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FIGURE 5 - Changes in the relative ferredoxin and flavodoxin abundance in
iron-limited culture of clone 7-47B after resupply of iron. Ferredoxin and
flavodoxin content is expressed as the Fd index, a ratio of HPLC peak areas (Fd
index = ferredoxin peak area/sum of ferredoxin+flavodoxin peak areas)
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FIGURE 6 - Chromatograms and corresponding peak absorption spectra of
plankton samples collected from (A) coastal marine and (B) estuarine
environments. Samples were collected with a 20 pm plankton net from (A)
Eel Pond, Woods Hole, MA USA in March 1997 and (B) Parker River,
Ipswich, MA USA in September 1996. The chromatograms have been
formatted to show the relevant 10 minute temporal region of
ferredoxin/flavodoxin elution.
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Abstract

A laboratory analogue of the IronEx II mesoscale iron enrichment

experiment was conducted to compare changes in biochemical (Fd index) and

biophysical (Fv/Fm) indicators of iron stress during recovery from iron

limitation. Both the Fd index, which relates the abundance of the iron-

regulated ferredoxin and flavodoxin proteins, and Fv/Fm, a nutrient-sensitive

measure of the photochemical yield, were used during IronEx II to monitor

the phytoplankton community response to fertilization. During IronEx II,

Fv/Fm increased to near maximal values after iron addition, while the Fd

index remained uniformly zero. Thus, results obtained with the two

methods seem contradictory with respect to the physiological state of the

phytoplankton following iron addition.

During the laboratory experiment, a large volume iron-limited culture

of the marine centric diatom Thalassiosira weissflogii was monitored at six-

hour intervals for changes in pigments, growth rate, Fv/Fm and Fd index for

72 hours following iron resupply. Measurements of Fv/Fm were made with

both a pump-during-probe flow cytometer (PDP-FCM) and a pulse amplitude

modulated (PAM) fluorometer. Whereas both measures of Fv/Fm showed

significant differences after iron addition as compared to a non-iron-enriched

control culture, the magnitude of the measured increase in Fv/Fm was greater

with the PAM fluorometer than with PDP-FCM. This is likely due to

differences in the time-scale of the two measurements (100 Rs in PDP-FCM vs.

600 ms in PAM), which leads to differences in the assessment of Fm between

the two methods.
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The results of the Fd index and PDP-FCM analyses also show similar

pattern but varying magnitude in response to iron resupply. After iron

addition, the cells traversed half of the total range of Fd indices (0.5 to 0.9) but

showed only a 10% increase in Fv/Fm (0.63 to 0.68). In contrast, during IronEx

II, Fv/Fm increased from 0.26 to 0.56 while the Fd index was uniformly zero.

The laboratory and field data were combined to develop a conceptual model

of the covariation of Fv/Fm and Fd index which describes a complementary

relationship between the two measures; Fv/Fm changes little as the Fd index

decreases from 1 to 0 (this study), but declines sharply in the range where Fd

index = 0 (IronEx II). These results suggests that photochemical systems are

affected by iron limitation only after the cell's adaptive capacity, in the form

of ferredoxin, is exhausted. If this is the case, flavodoxin induction represents

a more sensitive indicator of iron stress than Fv/Fm. However, Fv/Fm will

respond to changes in iron stress in the region where the Fd index is

uniformly zero. Thus, a combination of the two measures should reveal

changes in the severity of iron stress across the full response range. Further

studies are nonetheless required to test and validate this model of biophysical

and biochemical response.
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Introduction

The debate over potential iron limitation of oceanic productivity was

finally resolved, at least in the case of the equatorial Pacific, by the success of

the IronEx II mesoscale iron enrichment experiment in 1995 (Coale et al.

1996). During that experiment, a tremendous phytoplankton bloom resulted

from the enrichment of a 72 km2 patch of the eastern equatorial Pacific ocean

with nanomolar quantities of iron. Chlorophyll concentrations increased

thirty-fold and photosynthetic efficiency, which was very low prior to

fertilization, reached near-maximum levels. The tremendous biological

response to fertilization unequivocally demonstrated iron limitation of the

extant phytoplankton community. Both IronEx II and its predecessor IronEx I

(Martin et al. 1994) were performed in part to address criticisms regarding the

interpretation of in vitro enrichment experiments or "bottle bioassays" (e.g.

Buma et al. 1991, Coale 1991). Such assays are difficult to perform in a trace-

metal-clean fashion (Fitzwater et al. 1982) and suffer from potential artifacts

due to containment of the natural community (e.g. Venrick et al. 1977). Due

to their unavoidably small scale, translation of bottle bioassay results to whole

ecosystem response is problematic at best.

The IronEx I and IronEx II iron enrichments provided invaluable

information on the relationship between iron, primary productivity and

carbon dioxide uptake - data difficult to obtain using conventional techniques.

While large-scale fertilizations such as these are the most direct way to

understand ecosystem response, they are not a practical method for assessing

iron limitation. Mesoscale fertilizations are controversial, expensive,

logistically difficult and not possible on small temporal or spatial scales.
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There is still a need for rapid, non-invasive analytical methods that can assess

the physiological state of the phytoplankton in situ. This need has provoked

the search for so-called "diagnostic indicators", defined by Falkowski et al.

(1992) as "signals (or procedures) that empirically identify the symptoms of an

environmental constraint on phytoplankton growth rates". Two proposed

diagnostics of iron limitation are the ferredoxin (Fd) index and the ratio of

variable to maximum fluorescence (Fv/Fm).

The Fd index uses the relative cellular abundance of two proteins,

ferredoxin and flavodoxin, as a measure of the severity of iron stress

(Chapters 2 and 3). When iron becomes limiting, some organisms are able to

functionally replace ferredoxin, a common iron-sulfur redox protein, with

the non-iron-containing flavodoxin (e.g. Smillie 1965, Vetter & Knappe 1971,

Peleato et al. 1994). This response is common amongst oceanic

phytoplankton (Chapter 1) and seems to be specific to iron limitation (Chapter

2). Thus, these two proteins serve as reporters of the cells iron nutritional

history. The presence or absence of flavodoxin in a phytoplankton cell or

community serves as a qualitative indicator of iron stress. The relative

abundance of both ferredoxin and flavodoxin, expressed here as the Fd index=

[ferredoxin]/[ferredoxin + flavodoxin], varies with the extent of growth limitation by

iron. Changes in the Fd index should therefore be indicative of alleviation or

exacerbation of iron stress.

Both the "presence/absence" and "relative abundance" approaches

have been utilized in the field. The presence of flavodoxin alone has been

used as an indicator of iron stress on the Great Barrier Reef (Entsch et al.

1983)and in the subarctic Pacific (LaRoche et al. 1996). The ratio of ferredoxin
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and flavodoxin has been correlated with changes in iron stress in

Trichodesmium colonies in the Caribbean (Jones 1988), and also used to

monitor the response of the phytoplankton community to iron addition

during IronEx II (Chapter 3). The techniques developed for detection of these

proteins, antibodies (LaRoche et al. 1995) and FPLC (Jones 1988) or HPLC

(Doucette et al. 1996), are rapid and require no incubation or manipulation of

the cells.

Another proposed measure of the cellular response to iron stress is the

ratio of variable to maximum fluorescence (Fv/Fm). Since the time course of

fluorescence induction was first elucidated (Kautsky & Hirsch 1931), it has

become one of the most important tools in photosynthesis research.

Fluorescence induction describes the increase in fluorescence upon

illumination of a dark-adapted sample; it varies from Fo, the value observed

immediately upon illumination, to a maximum value, Fm. Almost all

chlorophyll fluorescence originates in photosystem II (PSII), and the rise from

Fo to Fm reflects increased energy dissipation via fluorescence as PSII reaction

centers become progressively "closed". Closure of PSII reaction centers occurs

when the primary electron acceptor pool (Q) becomes reduced, effectively

blocking further electron flow until Q is reoxidized. The ratio of variable

fluorescence (Fv = Fm-Fo) to maximum fluorescence (Fm) is a measure of the

maximum potential quantum yield of photochemistry (Butler 1978). As such,

it is sensitive to environmental factors that affect the components of the

photosynthetic electron transport. Both nitrogen and iron limitation cause a

loss of certain proteins or cofactors in PSII reaction centers, with

corresponding reductions in Fv/Fm proportional to the severity of nutrient
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stress (e.g. Greene et al. 1992, Falkowski et al. 1994). Iron and nitrogen stress

can be distinguished from each other by their differential effects on the

turnover time of electrons, which can also be calculated from the fluorescence

induction data (Falkowski et al. 1992). The practical applications of this

method have been greatly extended by the design of instruments for the

measurement of Fv/Fm in the field (Kolber et al. 1988, Falkowski & Kolber

1993). To date, it has been used to assess photosynthetic efficiency in areas as

diverse as the Gulf of Maine (Kolber et al. 1990) and the equatorial Pacific

(Kolber et al. 1994).

Both the Fd index and Fv/Fm methods were utilized during the IronEx

II mesoscale iron enrichment experiment to monitor the phytoplankton

community response to fertilization. Increases in photosynthetic efficiency,

measured using a fast repetition rate (FRR) fluorometer (Falkowski & Kolber

1995), were detected inside the experimental patch within one day of iron

addition (Behrenfeld et al. 1996). Fv/Fm values remained elevated during

fertilization, achieving levels near the theoretical maximum, then declined

after the last iron infusion. These results demonstrate that the extant

community was physiologically limited by iron.

Parallel measurements of ferredoxin and flavodoxin, measured using

HPLC, support the assertion of iron limitation of the phytoplankton

population (Chapter 3). However, all samples collected from the fertilization-

induced phytoplankton bloom had a Fd index of 0, i.e. the cells contained no

ferredoxin. This implies that the phytoplankton were still severely limited by

iron, despite three iron infusions that triggered an immense bloom and

enhanced the photosynthetic efficiency of the phytoplankton. Results

127



obtained with the two methods seem contradictory with respect to the

physiological state of the phytoplankton after fertilization. By the standards

of Fv/Fm, the cells were functioning at near maximum levels. Measurements

of ferredoxin and flavodoxin, however, suggest that the cells were still

severely limited.

This study aims to compare these Fd index and Fv/Fm methods in a

controlled laboratory situation, to better understand the relationship between

biochemical and biophysical responses to iron limitation. This was achieved

using a laboratory analogue of the IronEx II experiment. A twenty liter, iron-

limited culture was enriched with iron and monitored at six hour intervals

for three days. The iron-amended culture was analyzed for cellular

chlorophyll content, growth rates and ferredoxin and flavodoxin content.

Photosynthetic measurements of both a control culture and the iron-enriched

culture were performed using a pump-during-probe flow cytometer (PDP-

FCM) and also a pulse amplitude modulated (PAM) fluorometer. While the

experiment did not proceed exactly as planned, it provides compelling

preliminary data on the differences between the biochemical and biophysical

techniques. These results also highlight the need for further characterization

of this relationship, through experiments of similar design but greater scope.

Materials and Methods

Cultures The marine centric diatom Thalassiosira weissflogii (Grun.)

Fryxell et Hasle (clone ACTIN) was used for this study.

Growth of phytoplankton Cultures were grown in 0.2 pM filtered

Vineyard Sound (MA, USA) seawater (31%o) enriched with ESNW nutrients
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according to Harrison et al. (1980) with several modifications. Na2HPO4 was

substituted in equimolar amounts for Na2glyceroPO4. and selenium (as

H2SeO3) was added to a final concentration of 10-8 M. Trace metal additions

were made according to Brand et al. (1983). To yield iron-limited cultures,

iron and EDTA were added to 100 nM and 1 ipM, respectively. Seawater was

autoclave- or filter- (0.2 jim) sterilized then enriched with sterile nutrients.

Macronutrient (nitrate, phosphate and silicate) stocks were sterilized by

autoclaving while iron, trace metal, selenium, EDTA and vitamin stocks

were sterile-filtered (0.2 gm). All cultures were maintained at 200 C on a 14:10

hour light:dark cycle at an irradiance of ca 175 gE m-2 s-1 as measured with a

photometer (Biospherical Instruments model QSP-100).

Experimental procedures The inoculum culture (one liter volume)

was grown in an acid-washed glass 2.8 1 Fernbach flask as described above.

When cell densities reached approximately 3 x 103 cells-ml-1, the inoculum

was added to 19 liters of fresh medium in a 20 liter glass carboy. The cells

were acclimated for two days in the carboy, during which time the cell

densities increased to approximately 104 cells-ml-1. Immediately prior to iron

addition, samples were withdrawn for cell counts, ferredoxin and flavodoxin

analysis, chlorophyll determinations and photosynthetic measurements

(time zero). Two liters of culture were removed and placed in a sterile glass

Fernbach flask, to serve as the control culture for the photosynthetic rate

measurements.

The experiment was initiated by the addition of 10 gM iron and 100 i/M

EDTA (as a premixed FeEDTA solution) to the experimental flask. Iron

addition, and thus time "zero", was timed to occur one hour after the onset of
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the 14 hour light cycle in the incubator. Every 24 hour light:dark cycle

included 3 "daytime" samples and one during the "night", all spaced at 6

hour intervals. Samples were taken every 6 hours for the first 48 hours then

again at 60 and 72 hours. The experimental (iron added) carboy was sampled

for cell counts, ferredoxin and flavodoxin analysis, chlorophyll

determinations and photosynthetic measurements, whereas the control flask,

because of its small volume, was only sampled for cell counts and

photosynthetic rate measurements.

Growth rates Cell densities were determined by four replicate

microscopic counts of Utermohl's preserved samples in a Fuchs-Rosenthal

hemacytometer. Growth rates during exponential phase were calculated from

linear regressions of the natural log of cell density versus time.

Chlorophyll a determinations Chl a was measured in triplicate

samples. Cells were collected by gentle filtration onto Millipore SSWP

membranes (3 gm, 25 mm diameter) and frozen in liquid nitrogen until

analysis. Filters were extracted in 100% acetone for 24 hours at 40 C in the

dark. Before measurement, samples were diluted to 90% acetone and allowed

to warm to room temperature. Chlorophyll was measured fluorometrically

using a Turner Designs fluorometer (model 10-AU) that had been calibrated

with pure chlorophyll a (Sigma) using the extinction coefficients from Jeffrey

and Humphrey (1975).

Protein extraction For ferredoxin and flavodoxin measurements,

approximately one liter of culture was collected onto a 3 gm polycarbonate

filter (47 mm diameter) and frozen at -800C until analysis. Cells and their

filters were placed in a 2 ml tube with extraction buffer and zirconium beads.
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Cells were ruptured by three, fifty second cycles in a mini-beadbeater (Biospec

Instruments, Bartlesville, OK, USA). The cell lysate was centrifuged for one

hour at 105,000 x g and the supernatant was filtered (0.45 pm) and injected

into the HPLC.

HPLC of ferredoxin and flavodoxin Ferredoxin and flavodoxin

abundance was determined by a previously described HPLC method (Doucette

et al. 1996). Ferredoxin and flavodoxin in cell extracts were separated by

anion-exchange HPLC. Detection was performed with a Hewlett-Packard

model 1050 diode array detector (Hewlett-Packard Co., Andover, MA, USA),

which also allowed identification of the proteins by their absorption spectra.

Quantification of peak areas was performed by HP ChemStation software

(Hewlett-Packard) in autointegration mode. The relative abundance of

ferredoxin and flavodoxin is expressed as the "Fd index", a ratio of their HPLC

peak areas (see also Chapter 2):

Fd index = [ferredoxin]/[ferredoxin + flavodoxin]

Pump-during-probe flow cytometry The design of the pump-during-

probe flow cytometer is described in Olson et al (1996). Cells were dark-

adapted for 2-5 minutes prior to analysis. As with traditional flow cytometry,

cells were injected into a stream of sheath fluid which carried them in a

single file through the assay region. As a cell entered the assay region, it

passed through an infrared laser beam which triggered the excitation laser

(488 nm light) pulse. The focus width of the laser beam and the sample flow

rate were controlled such that each cell was exposed to the blue excitation

light for 100 ps. Fluorescence induction rise times of 30-100 ps were obtained

by changing the laser output power. The fluorescence emitted by the cell was
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normalized to fluorescence data obtained from 9.3 gm fluorescent latex

microspheres and plotted as a function of time. The resultant time-course of

fluorescence yield was fit to a theoretical model using least-squares linear

regression (see Olson et al. equation 7). Values for the maximum (Fm) and

minimum (Fo) fluorescence were derived from the model equation and used

to calculate the maximum potential quantum yield of photochemistry as:

(Fm -Fo)/Fm = Fv/Fm

PDP-FCM measurements were not performed for cells collected at "night"

when incubator lights were off. Measurements were also not conducted at

the 72 hour time point for control or experimental cells, or at the 60 hour

time point for control cells.

PAM fluorometry A Pulse Amplitude Modulated (PAM) fluorometer

(Heinz Walz, Effeltrich, Germany) was used to measure photosynthetic

parameters in both the control and iron-amended cultures. The fluorometer

was equipped with a high sensitivity cuvette, which allowed detection of

adequate fluorescence signals when using a low intensity measuring light

beam (Schreiber et al. 1986). The minimum fluorescence yield (Fo) was

measured after 15 minutes of dark adaptation, to alleviate any photochemical

or non-photochemical quenching. The maximum fluorescence level (Fm)

was then determined using a 600 ms flash from a Schott saturation flash

lamp. Increases in flash duration and/or intensity led to detectable decreases

in the maximum fluorescence level. The maximum quantum yield for stable

charge separation was calculated as:

(Fm - Fo)/Fm = FV/Fm
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PAM fluorometer measurements were not conducted on samples collected

during the "night", when the incubator lights were off.

Results

Cell growth with and without added iron

Both the control and iron-amended cultures exhibited a period of

exponential growth from about 0 to 48 hours followed by a plateau in cell

numbers (Figure 1). Growth rates in the experimental and control cultures

were similar during this exponential phase (R = 0.45-d -1 vs. 0.41-d-1), although

the iron-enriched culture achieved a higher final cell density.

Changes in chlorophyll and ferredoxin index after iron addition

Both chlorophyll per cell and the Fd index showed an overall increase

during the course of the experiment (Figure 2). Cellular pigment content

nearly doubled between 0 and 72 hours, from 4.01 to 7.72 pg-cell-1. There was

also a diel pattern evident in the chlorophyll data, with decreases in

chlorophyll per cell during the dark period. The Fd index, in contrast, did not

seem to be sensitive to the light:dark cycle. Changes in the Fd index

paralleled cell growth (Figure 3). The Fd index increased from 0.52 to 0.89 in

the first 48 hours of the experiment, during the exponential phase of cell

growth. After 48 hours, growth rate slowed with a corresponding decrease in

the Fd index.
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Photosynthetic efficiency in control and iron-amended cultures

The maximum quantum yield of photochemistry (Fv/Fm) was

determined in the control and experimental cultures using both pump-

during-probe flow cytometry (PDP-FCM) and pulse-amplitude-modulated

(PAM) fluorometry. Both methods measured a significantly greater Fv/Fm in

response to iron addition as compared to the control (Figure 4). The

maximum value measured by PDP-FCM (t=48) was 0.68 in the experimental

culture compared to 0.58 in the control. Using PAM fluorometry, maximum

values of 0.73 and 0.54 were measured for the iron-amended and control

cultures, respectively, also at t=48.

The results of the two methods at the initial and final time points

diverged somewhat. Fv/Fm values measured with the PDP-FCM are lower at

60 hours (0.56 +Fe, 0.57 control) than at time zero (0.63) for both the control

and experimental cultures . The data obtained from the PAM fluorometer,

however, showed similar Fv/Fm for control and +Fe cells at the beginning

(0.58) and end (0.61 +Fe, 0.57 control) of the experiment.

The absolute values of Fv/Fm obtained using the two methods were

somewhat different. To eliminate this effect and facilitate comparison of the

two data sets, Fv/Fm measurements were normalized to their initial values

for both control and iron-amended cultures (Figure 5). The magnitude of the

change observed upon iron addition is greater with the PAM fluorometer as

compared to the PDP-FCM. The maximum value obtained with PDP-FCM

(t=36 hours) was 108% of the initial value, as opposed to a maximum of 127%

of initial using the PAM fluorometer (t=48 hours). The final values of Fv/Fm

measured with the PDP-FCM and the PAM fluorometer were 89% and 106%
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of initial values, respectively. In the control culture, the final value of Fv/Fm

measured with PDP-FCM was slightly lower than that obtained from PAM

fluorometry, 90% vs. 99% of the initial values.

Changes in Fd index and FVLFm in response to iron addition

The response of the Fd index to iron addition showed a pattern similar

to that of Fv/Fm as measured by both PDP-FCM and PAM fluorometry (Figure

6). The Fd index, Fv/Fm (PDP) and Fv/Fm (PAM) all increased throughout the

first 48 hours following iron addition, which was also the exponential growth

phase of the culture. Between 48 and 72 hours, all three measures decreased,

although Fv/Fm declined more rapidly than the Fd index. The maximum

increase in Fv/Fm was also proportionately smaller than the corresponding

change in Fd index. Fv/Fm changed by 8 to 27% of its initial value while the

Fd index almost doubled.

Discussion

This study was devised to investigate the differences in the

photochemical and biochemical responses of the phytoplankton observed

during IronEx II. The goal was to characterize the photosynthetic response of

iron-limited Thalassiosira weissflogii to iron resupply over the full range of

Fd indices. At the start of the experiment, however, the cells were only

mildly iron-stressed, as evidenced by a Fd index of 0.5. The results

nonetheless provide a detailed description of the relationship between Fv/Fm

and the Fd index as the latter varies from 0.5 to 0.9, over about half of the

intended range, following iron addition. In contrast, Fd indices measured
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during the IronEx II experiment, the inspiration for the present study,

remained uniformly zero. By combining the results of this analysis with

those of the IronEx II enrichment, a model of the inferred variation in Fv/Fm

over the full range of Fd indices was constructed. Further study is necessary

to test and verify this model; suggested modifications and improvements on

the present experimental design are discussed below.

Iron limited growth

The magnitude of the iron addition used during this experiment (10

pM) is much greater than that of IronEx II (1-2 nM). A higher iron level was

chosen for a number of reasons. A secondary aim of the study was to

determine the time scale of changes in protein expression, thus we wanted

the cells to switch from flavodoxin to ferredoxin expression. It was also

desirable to examine the biophysical response over the entire range of Fd

index values. The organism used for this study, Thalassiosira weissflogii, has

high iron requirements relative to equatorial Pacific phytoplankton (Chapter

1). Therefore, it was necessary to add sufficient iron to not only relieve

limitation but also to make the cells entirely iron-replete.

Unfortunately, the cells were not fully iron-limited at the start of the

experiment, thus the analysis did not cover the full range of Fd indices as

planned.. Nonetheless, results of the biophysical and biochemical assays

suggest that the cells responded positively to iron addition. Significantly

higher Fv/Fm values were measured both by PDP-FCM and PAM fluorometry

in the experimental culture as compared to the control (Figure 4). In addition,

the iron-enriched culture exhibited nearly a doubling in its Fd index, from
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-0.5 at the beginning of the experiment (indicative of moderate iron stress) to

-0.9 by the end of exponential growth (Figure 3).

The experiment encompassed not only the exponential phase of

growth (t=0-48 hours) but also a plateau stage (t=48-72 hours). The decline in

growth rate between 48 and 72 hours coincided with a drop in the Fd index,

suggesting that the cells were once again becoming iron-stressed. Thus, the

period from 0 to 48 hours represented the response of the cells to iron

resupply. After 48 hours, the process was reversed, and the cells adapted to

the shortage of iron. During the 48 hour period of exponential growth when

cells were becoming more iron-replete, about half of the intended range of the

Fd index was examined.

Comparison of fluorometric methods

The biophysical response to iron addition observed with the PDP-FCM

and the PAM fluorometer showed similar patterns (Figure 4A). Both exhibit

a general increase in the maximum quantum yield of photosynthesis during

the first 48 hours (exponential growth). The primary difference between the

results of the two methods is the magnitude of the change in Fv/Fm observed

in response to iron resupply. In Figure 5, all Fv/Fm measurements have been

normalized to their initial values to facilitate comparisons between the two

methods.. The increase in Fv/Fm observed with the PAM fluorometer is -30%

over initial, as compared to -10% with the PDP-FCM (Figure 5A). The design

of the two instruments is similar in that they both utilize a single, saturating

flash of light to induce fluorescence. The length of this flash, however, is

quite different: 100 js in PDP-FCM and 600 ms in PAM fluorometry. It is this
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flash-duration difference that leads to the observed differences in the

magnitude of Fv/Fm.

The higher Fv/Fm measured by the PAM fluorometer compared to the

PDP-FCM arises from differences in the assessment of maximum fluorescence

Fm. When a dark-adapted cell is exposed to light, the increase in fluorescence

with time shows a polyphasic rise (e.g. Strasser et al. 1995). This so-called

"induction curve" begins with a fast, or photochemical, rise from the initial

fluorescence F0 (or O) to an elevated level, termed J by Strasser and

Govindjee, which occurs in less than 2 ms. This is followed by a slow or

thermal rise to a yet higher level I within 100 ms. The final rise to the

maximum value, Fm or P, occurs on the time scale of less than 1 s. The fast

phase of fluorescence induction is attributed to saturation of photochemical

quenching i.e. closure of PSII reaction centers via reduction of the primary

stable acceptor QA to QA-. The subsequent fluorescence rise from the J to I

levels is well-documented but not as well understood. Several hypotheses

have been presented to explain this slow phase of fluorescence induction (see

e.g. Dau 1994, Strasser et al. 1995, Schreiber & Krieger 1996).

Both the PDP-FCM and the PAM fluorometer record Fo similarly. The

PDP-FCM, however, records the Fm value obtained during 100 ps of

continuous illumination, the J level. This corresponds to the strictly

photochemical component of the fluorescence induction curve. It requires

more than 100 ps for electron transfer to proceed beyond QA, thus the light

flash during PDP-FCM provides enough time for each PSII to "fill-up" once

(Olson et al. 1996). The PAM, in contrast, measures Fm after 600 ms, at the I or

P level. During this time, electron flow proceeds past QA, and a given PSII
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center can fill-up or "turnover" more than once. The PDP-FCM

measurement records only fluorescence associated with the saturation of

photochemical capacity. The fluorescence measured by the PAM fluorometer

may include that arising from suppression of both photochemical and non-

photochemical quenching.

There is considerable debate in the photosynthesis community

regarding the "proper" level for the assessment of maximal fluorescence. It

can be argued that J is an underestimate due to the presence of

nonphotochemical quenching (Schreiber et al. 1986). On the other hand,

measurements made on long time scales lead to multiple turnovers of PSII

and incorporate effects other than photochemistry which occur downstream

of PSII (Ting & Owens 1992, Biichel & Wilhelm 1993). Despite theoretical

differences in measurement, the two methods yield results which are

qualitatively similar, both here and in the literature (Schreiber & Krieger

1996). Thus the lack of true mechanistic understanding of Fv/Fm does not

interfere with the goal of this study, which was to compare the time course of

changes in Fv/Fm relative to Fd index during recovery from iron limitation.

In this context, it is possible to note the observed differences in the magnitude

of the response measured by PDP-FCM and PAM fluorometry and leave the

discussion of causes and mechanisms to those more familiar with the

subtleties. of the methods.

Biochemical vs. biophysical methods

Changes in the Fd index of the iron-amended culture followed the

same general pattern as Fv/Fm (Figure 6). All of the indices increased during
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the first 48 hours, corresponding to exponential growth of the culture.

Between 48 and 72 hours, cell growth slowed and the Fd index and both

Fv/Fm measures declined as the cells presumably ran out of iron and entered

plateau phase. PAM fluorometric measurements of Fv/Fm, however, tracked

the variation in Fd index more closely than those obtained using PDP-FCM.

Both Fd index and Fv/Fm (PAM) gradually increased over the first two days,

reaching a maximum at 48 hours. The Fv/Fm (PDP) reached a maximal value

within the first 12 hours after addition and maintained essentially that level

until 48 hours. The magnitude of the observed changes also showed better

correlation between the Fd index and Fv/Fm (PAM) as opposed to Fv/Fm

(PDP). During this study, the cells traversed half of the total range of Fd

indices, yet Fv/Fm changed by only -30%, in the case of the PAM, and a mere

-10% with the PDP-FCM.

The results of Fd index and Fv/Fm analyses also showed a similar

pattern but varying magnitude during the period from 48 to 72 hours, when

the cells again became iron limited. Growth rate, Fd index and Fv/Fm (both

PAM and PDP) all decreased during this time. The decline in Fv/Fm was

much more drastic than that in Fd index. Thus, the relative response of the

biochemical and biophysical indices was quite different during the transition

from iron-limitation to iron-sufficiency than during the onset of iron

limitation. Any further comparisons of the Fd and Fv/Fm measures should

then investigate both the response to iron addition and also the adaptation to

iron starvation.
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Synthesis of laboratory and field data

The data from this study cover only the range of Fd indices from -0.5 to

0.9. However, by combining these results with those obtained during the

IronEx II experiment, it is possible to construct a "hybrid" model of the

responses of the biochemical and biophysical indicators over nearly the entire

range of Fd indices. The relationship between relative growth rate and Fd

index determined in Chapter 2 for Thalassiosira weissflogii serves as the basis

for this model (Figure 7). Only the PDP-FCM data from this analysis are used

in the model, as it most closely resembles the fast repetition rate (FRR)

fluorometer used during IronEx II. The FRR utilizes a series of subsaturating

blue-light flashes to close PSII reaction centers and induce maximal

fluorescence (Falkowski & Kolber 1995), whereas both the PDP-FCM and the

PAM fluorometer use only one saturating flash. However, the measurement

time scale of the FRR (ca. 150 js) is very close to that of the PDP-FCM (100 gs)

and much shorter than that of the PAM fluorometer (600 ms). The matching

of measurement time seems particularly important, considering the effect of

flash length on the determination of Fm.

In the present study, cellular Fd indices ranged from 0.5-0.9 and values

of Fv/Fm varied between a minimum of 0.63 and a maximum of 0.68. The

measured Fd indices were used to calculate %gmax for the corresponding

Fv/Fm measurement using the linear fit of the Fd index-growth rate data from

Chapter 2. During IronEx II, pennate diatom division rate increased from a

minimum of -1 division-day -1 to a maximum of -1.8 divisions-day -1

(Constantinou et al. 1996). Using the value of 3.3 divisions-day-1, measured

by Fryxell and Kaczmarska (1994) for similar pennate diatoms in iron

141



enrichment bottles, as a conservative maximum, diatom growth rates during

IronEx II increased from 30 to 55% of g1max. The minimum and maximum

Fv/Fm measured during IronEx II were 0.26 and 0.56 (Behrenfeld et al. 1996).

The data from this study and the IronEx II experiment is summarized in

Table I.

In Figure 7, the calculated %.max and measured Fv/Fm from this study

are plotted along with the minimum and maximum values of measured

Fv/Fm and estimated %Imax from IronEx II. The solid line is the best linear

curve fit determined in Chapter 2 and the broken lines are linear fits of the

study and IronEx II data. The broken lines are not intended to imply a linear

relationship between the Fv/Fm and growth rate date, they are merely for

illustration and discussion.

The Fv/Fm response inferred from the model seems to be the reverse of

that of the Fd index. In the range above ~60% 9max (this study), the Fd index

ranges from 0 to 1 but there is little change in Fv/Fm. At growth rates below

-55% of .max (IronEx II), the Fd index is uniformly zero while Fv/Fm

increases with increasing growth rate. Thus, it seems that cells may first

respond to iron stress by reducing their ferredoxin pools (Fd index - 0). Only

after this adaptive capacity is exhausted (Fd index = 0) do they start to

experience impairment in their photochemical apparatus, evidenced by the

resultant decrease in photochemical yield (Fv/Fm).

If this is the case, flavodoxin induction represents a more sensitive

indicator of iron stress than Fv/Fm. It will be induced before significant

decreases in Fv/Fm are detected. However, in the region where the Fd index is

uniformly zero, e.g. during IronEx II, Fv/Fm will respond to changes in iron
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stress that are not apparent using the Fd index. Thus, the two methods

together may provide the best information about changes in the severity of

iron stress over the entire range of iron limited growth.

Suggestions for further study

The preliminary results of this study, in combination with those

observed during IronEx II, present an incomplete but thought-provoking

picture of the relationship between biochemical and biophysical indices of

iron limitation. To clarify this relationship, this comparison should be

repeated, with several important modifications. First and foremost, it is

essential to cover the entire range of Fd indices from 0 to 1. While it is

necessary to add a large quantity of iron to ensure that the cells cover the

entire range of Fd indices, it would also be useful to examine the effects of

smaller iron additions, a design more similar to that of IronEx II. In addition

to iron resupply experiments, further studies should also examine the

inverse case of iron starvation. The patterns of Fd index and Fv/Fm observed

during exponential and plateau growth phases in this experiment (Figure 6)

imply that the time course of response for the two conditions may be very

different.

The variety of measurements should also be expanded. Estimates of

cell volume would greatly aid in the analysis of diel changes in pigment-cell- 1

as well as comparison of pigment and Fv/Fm data. The PDP-FCM is currently

unable to perform the traditional flow cytometric analyses of forward light

scatter and red fluorescence. It would be informative to compare the results

of traditional flow cytometric measures with those obtained for the same cells
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using the PDP-FCM. Finally, this study characterized only the response of the

iron-amended culture in detail. Any further comparisons should include

complete analysis of control cells as well as experimentally treated cultures.
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TABLE I: Summary of Fv/Fm, Fd index and relative growth rate data from the
present study and the IronEx II experiment.

source Fd index EvFim UImax
IronEx II Oa 0.26-0.56 b  30-55c
this study 0.5-0.9 0.63-0.68 72-86d

a from Chapter 3
b from Behrenfeld et al. (1996)
c actual growth rates from Constantinou et al. (1996)

maximum growth rates according to Fryxell and Kaczmarska (1994)
d calculated from measured Fd indices using linear fit of Chapter 2 data
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Conclutsions
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The expression and regulation of the proteins ferredoxin and

flavodoxin were investigated to assess their utility as biomarkers of iron stress

in marine phytoplankton. Previous studies of iron limitation of

phytoplankton growth have been hindered by the lack of suitable analytical

techniques. Thus, the goal was to develop these two proteins as a tool to

facilitate ecological studies of iron limitation. Ideally, the ferredoxin-

flavodoxin biomarker system would permit the unambiguous identification

of physiological iron limitation on varying temporal and spatial scales. This

dissertation addressed several key questions:

1) Do marine phytoplankton employ the switch from ferredoxin to

flavodoxin in response to iron stress?

2) If so, is this switch specific to limitation by iron?

3) Can ferredoxin and flavodoxin be used to detect iron limitation in

natural populations of phytoplankton?

Chapter 1 presents the results of a comprehensive screening of

flavodoxin expression in a diversity of marine phytoplankton, in an attempt

to determine the generality of flavodoxin induction as a biomarker of iron

limitation. Most of the organisms examined (12 of 17) express flavodoxin

when iron-limited, while the remaining 5 species were never observed to

express flavodoxin. This variability in flavodoxin expression is similar to

that observed in freshwater algae. The phenomenon of non-expression is

relatively uncommon and seems to be restricted to, but not characteristic of,

organisms from neritic habitats. This implies that non-induction should not
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confuse the interpretation of ferredoxin and flavodoxin measurements made

in open-ocean areas.

Chapter 1 also summarizes the reactivity of two polyclonal antibodies

developed as analytical tools for ferredoxin and flavodoxin detection. The

antibodies, raised against proteins from Thalassiosira weissflogii exhibit

differing levels of specificity which determine, and also limit, their usefulness

in natural populations. The immunological and chromatographic methods

for ferredoxin and flavodoxin detection employed in Chapter 1 differ in

several respects, including phylogenetic specificity and qualitative and

quantitative nature of the results. While both techniques should prove

useful for analysis of ferredoxin and flavodoxin in natural samples, their

differences make it necessary to consider the requirements of a particular

study in order to choose the most appropriate analytical tool.

Chapter 2 addresses the specificity of flavodoxin expression in

Thalassiosira weissflogii with respect to several common limiting factors

other than iron: nitrogen, phosphorous, silicate, zinc and light. Flavodoxin

induction proves to be specific to iron stress and insensitive to limitation by

the alternative limiting factors examined. This study also investigates

potential indirect regulation of cellular ferredoxin and flavodoxin content by

N substrate in iron-limited T. weissflogii. Use of either nitrate or

ammonium as the sole N source does not affect the relative abundance of

ferredoxin and flavodoxin despite the well-known effect of N substrate on

cellular iron quota. The insensitivity of flavodoxin expression to light and

nutrients other than iron makes it an ideal indicator of iron limitation.
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The data in Chapter 2 also describe the relationship between ferredoxin

and flavodoxin abundance, expressed by the "Fd index", and iron-limited

growth rate. The Fd index, a concept introduced in this chapter, relates the

amount of ferredoxin to the combined ferredoxin and flavodoxin pool, or:

[ferredoxin] / [ferredoxin + flavodoxin]

This relationship between Fd index and growth rate is comprised of two

distinct regions. In the first region, at low growth rates, ferredoxin is

undetectable and the Fd index is uniformly zero. In the second region, at

moderate-to-high growth rates, ferredoxin and flavodoxin co-occur in the

cells. The substitution of flavodoxin for ferredoxin proves to be a gradual

process, not a simple "on-or-off" response. In addition, flavodoxin expression

is very sensitive to iron limitation, occurring even at relatively high growth

rates (80-90% Rmax)- When the two proteins co-occur in cells, the Fd index

varies according to changes in the severity of iron stress. While more data is

needed to establish the exact form of the relationship (e.g. linear, exponential,

etc.), the results do support an inverse relationship between Fd index and

severity of iron limitation. The data presented in Chapter 2 provide a

comprehensive picture of ferredoxin and flavodoxin regulation by various

nutrients and light - information that is essential to verify the use of these

proteins as diagnostics of iron limitation in natural populations.

Results detailed in Chapters 1 and 2 suggest that relative cellular

ferredoxin/flavodoxin content, as measured by HPLC, is a sensitive and

reliable indicator of iron limitation in marine phytoplankton. Chapter 3

describes the use of this biomarker system and its HPLC detection method in

the field during the IronEx II open-ocean iron enrichment experiment.
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During IronEx II, HPLC analysis was successfully used to monitor the iron

nutritional status of the phytoplankton community over the course of the

experiment. The results of this analysis were somewhat surprising, in that no

ferredoxin expression was observed in response to iron fertilization.

Laboratory studies with clonal cultures of equatorial Pacific pennate diatoms

confirmed the ability of these organisms to synthesize ferredoxin when iron-

replete and to modulate their cellular ferredoxin-flavodoxin content in about

one day. The lack of ferredoxin resynthesis during IronEx II must therefore

represent continued iron limitation of the phytoplankton community,

despite the tremendous increases in chlorophyll and photosynthetic efficiency

following iron addition. The results of the IronEx II analysis describe not only

the response of the phytoplankton community to iron fertilization, but also

illustrate the adaptive role of the ferredoxin and flavodoxin proteins in the

environment.

The results of the ferredoxin/flavodoxin analysis from IronEx II were

quite different from those obtained using biophysical methods. The

relationship between biophysical (Fv/Fm) and biochemical (Fd index)

measures of iron limitation was examined in the laboratory using T.

weissflogii the results of which are presented in Chapter 4. The laboratory

data provide a detailed description of the relationship between Fv/Fm and the

Fd index as the latter varies from 0.5 to 0.9, over about half of the total range,

following iron addition. These laboratory data were combined with the

results from IronEx II to construct a conceptual model of the covariation of

Fv/Fm and Fd index. The model describes a complementary relationship in

which Fv/Fm changes little as the Fd index decreases from 1 to 0, but shows a

161

I



steep decline in the range where Fd index = 0. Thus, photochemical systems

seem to be spared the ill effects of iron limitation until the cell's adaptive

capacity, in the form of ferredoxin, is exhausted. Further studies are required,

however, to test and validate this model of biophysical and biochemical

response.

In summary, the ferredoxin and flavodoxin proteins should prove to

be a useful indicators of iron stress in marine eukaryotic phytoplankton. The

presence or absence of flavodoxin serves as a sensitive qualitative indicator of

growth limitation by iron. Measurements of ferredoxin and flavodoxin

abundance together should allow assessment of the severity of iron stress.

The use of ferredoxin and flavodoxin as indicators in the field, however, is

not without limitations. Flavodoxin induction is not a universal response to

iron stress, but it does seem to be the rule for phytoplankton from open-

ocean, low-iron habitats, where issues of iron limitation are most relevant.

Analyses made in coastal areas may be more difficult to interpret because of

the potential for flavodoxin non-induction. The relative abundance of

ferredoxin and flavodoxin should provide an indication of the severity of

iron stress when both proteins are present in the cell. This measure is not

informative when the Fd index is uniformly zero, as in IronEx II. Based on

the model data in Chapter 4, a combination of ferredoxin/flavodoxin

measurements in parallel with biophysical data may provide the most

reliable information on the severity of iron limitation across the full range of

possible growth rates.
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CELL VOLUME CALCULATION:

Thalassiosira weissflogii 970 femtoliters

IronEx II pennates:
7-47B 138 fl
A3-30 213 fl
10-40A 272 fl
average= 208 fl

T. weissflogii cell volumes from Latasa (1995) and Maldonado & Price (1996).

Cell volumes for pennates calculated as 0.5 (length x width x depth).
Dimensions of pennate clones (estimated from SEM micrographs):
7-47B 3.5gm x 22.5gm x 3.5gm
A3-30 4.5gm x 21gm x 4.5gm
10-40A 4.5gm x 11gm x 11gm

FLAVODOXIN-CELL -1 CALCULATION:

Estimate of flavodoxin-cell-1 for Thalassiosira weissflogii growing at 55-60% of
gmax (possible growth rate during IronEx II - see Chapter 3): 50 amol-cell-1

Average pennate cell volume (208 fl) is 0.21 T. weissflogii volume (970 fl).
Scaling flavodoxin-cell-1 by cell volume for pennates:

10.5 amol-cell-1

THEORETICAL FLAVODOXIN CONCENTRATIONS DURING IRONEX II:

Cell density on JD154-155 was approximately 1.59 x 103 cells-ml-1 (pennates)
If each cell contained 10.5 amol flavodoxin, the seawater contained:

16695 amol flavodoxin-ml-1
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EXTRACTED vs. THEORETICAL FLAVODOXIN DURING IRONEX II:

Sample collected on JD155 (243 mm filter) contained cells from 1063 liters. Its
flavodoxin HPLC peak area was 1173, corresponding to

1.09 nmol of flavodoxin total.
Theoretically, 1063 liters should contain 16695 amol-ml-1 x 1,063,000 ml =

17.7 nmol flavodoxin total

Estimated recovery: 1.09 nmol/17.7 nmol = 6.2%

Smaller sample collected on JD155 (142 mm filter) contained cells from 280
liters. It's flavodoxin HPLC peak area was 418.4, corresponding to

0.39 nmol of flavodoxin total.
Theoretically, 280 liters should contain 16695 amol-ml-1 x 280,000 ml =

4.67 nmol flavodoxin total

Estimated recovery: 0.39 nmol/4.67 nmol = 8.4%

NOTES ON POTENTIAL IMPROVEMENTS:
The small filters, which had a more dense layer of cells, seemed to

extract slightly better than the lightly-covered filter from the larger in situ
pump. Thus, the amount of glass fiber seems to hinder extraction, likely by
interfering with cell breakage. There are two basic ways to improve upon
ferredoxin and flavodoxin recovery from field samples for analysis by HPLC:
improved collection methods or improved extraction processes.

Collection methods: It appears that the necessary volume of water
filtered for a sample are less than that collected during IronEx II, because of
extraction problems.. Reasonably large volumes of water could be filtered
using alternative filtration techniques such as cross-flow filtration, Nitex
meshes arranged in series or membrane filter cartridges followed by
backflushing. This would allow cells to be collected as a cell pellet, thus
eliminating glass fibers that are likely to hinder cell breakage.

Extraction methods: If cells are to be collected on filter, extraction
could be improved by increasing cell breakage. The addition of detergents to
extractionr buffer would aid cell lysis, but may also require alterations in the
HPLC protocol to accommodate detergents during chromatography. Processes
that would reduce the size of glass fiber fragments might also enhance cell
breakage. This could possibly be achieved through mechanical means
(crushing of glass fibers) or chemical means (dissolution of glass fibers). It
would be necessary to check that the mechanical or chemical procedures do
not affect protein stability or structure.
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Materials and Methods

Cultures This study utilized the marine centric diatom Thalassiosira

weissflogii (Grun.) Fryxell et Hasle (clone ACTIN).

Growth of phytoplankton Cultures were grown in 0.2 jM filtered

Vineyard Sound (MA, USA) seawater (31%o) enriched with ESNW nutrients

according to Harrison et al. (1980) with several modifications. Na2HPO4 was

substituted in equimolar amounts for Na2glyceroPO4. and selenium (as

H2SeO3) was added to a final concentration of 10-8 M. Trace metal additions

were made according to Brand et al. (1983). Seawater was autoclave-sterilized

then enriched with sterile nutrients. Macronutrient (nitrate, phosphate and

silicate) stocks were sterilized by autoclaving while iron, trace metal,

selenium, EDTA and vitamin stocks were sterile-filtered (0.2 Rm).

All cultures were maintained at 200C on a 14:10 hour light:dark cycle at

an irradiance of ca 175 gE m-2 s-1 as measured with a photometer

(Biospherical Instruments model QSP-100). Cultures (2 L volume) were

grown in acid-washed 2.8 L Fernbach flasks in medium containing either 500

nM, 1 gM, 10 pM or 50 gM added iron. EDTA was added to ten times the iron

concentration. A 10 ml aliquot of culture was collected by filtration onto a 25

mm diameter GF/F filter for determination of protein per cell. The

remaining culture volume was harvested by filtration onto 3 pm pore size

polycarbonate filters (47 mm diameter) and frozen in liquid nitrogen prior to

analysis. Cells were collected onto a total of four polycarbonate filters for the

500 nM, 1 p.M and 50 gM cultures and three filters for the 10 gM culture.

168



Cell counts Cell densities were determined by four replicate

microscopic counts of Utermohl's preserved samples in a Fuchs-Rosenthal

hemacytometer.

Determination of protein per cell Cells harvested onto glass fiber filters

were placed in a 2 ml tube (with the filter) containing extraction buffer (20

mM phosphate, 100 mM EDTA, 100 mM NaCl, 0.013 M :-mercaptoethanol, 1

mM PMSF pH 7.0) with 1% SDS and zirconium beads. Cells were ruptured by

three, fifty second cycles in a mini-beadbeater (Biospec Instruments,

Bartlesville, OK, USA). The volume of supernatant was measured, aliquots

were diluted five- and ten-fold with sterile distilled water and protein content

was measured by BCA assay (see below). "Protein per cell" was calculated as:

(supernatant volume * protein concentration) + cells harvested

Protein extraction for HPLC To prepare extracts for HPLC, cells and

their filters were minced and placed in a 2 ml tube with extraction buffer and

zirconium beads and homogenized in a bead-beater as described above. Both

the volume and protein content of this crude lysate was measured. The crude

cell lysate was then centrifuged for one hour at 105,000 x g. The supernatant

was transferred to a clean tube, after which its volume and protein content

measured. This supernatant was then filtered (0.45 gm) and a 2 ml volume

was injected into the HPLC.

Protein determinations Protein concentrations were determined using

the BCA Protein Assay (Pierce Co., Rockford, IL USA).

HPLC of ferredoxin and flavodoxin All cultures were analyzed using a

previously described HPLC method (Doucette et al. 1996). Ferredoxin and

flavodoxin in cell extracts were separated by anion-exchange HPLC. Detection
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was performed with a Hewlett-Packard model 1050 diode array detector

(Hewlett-Packard Co., Andover, MA, USA). Quantification of peak areas was

performed by HP ChemStation software (Hewlett-Packard) in autointegration

mode.

Calculation of ferredoxin and flavodoxin content Standard curves

relating HPLC peak area to injected protein were determined using purified

ferredoxin and flavodoxin from Porphyra umbilicalis and Anabaena,

respectively. HPLC peak areas were converted to "ferredoxin or flavodoxin

injected" using these standard curves.

The number of "cells extracted for HPLC" was calculated as:

(crude lysate volume * crude lysate protein concentration) + "protein per cell"

After centrifugation of the crude cell lysate, the volume of supernatant was

measured (to account for volume lost to insoluble matter in the pellet). This

supernatant was assumed to contain the soluble protein from the total

number of "cells extracted for HPLC". Two milliliters of this supernatant was

injected for analysis. The number of "cells injected" was calculated as:

(2.0 ml/volume of supe after centrifugation) * "cells extracted for HPLC"

and used for calculations of ferredoxin and flavodoxin per cell and per

protein.

Ferredoxin or flavodoxin per cell was calculated as:

. "ferredoxin or flavodoxin injected" + "cells injected"

Ferredoxin or flavodoxin per cell was converted to ferredoxin or flavodoxin

per protein using the protein per cell values.
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Results

Fd Fly Fd Fly
A amol amol pg pg Fd Fly

Fe (div* per per per per per per
added da_•-• cell* cell* cell cell Prot. prot

500 nM 1.20 39.72 16.64 0.496 0.374 0.009 0.007
(9.42) (2.36)

1 RM 1.21 65.49 - 0.819 - 0.013 -
(18.56)

10 jgM 1.19 83.77 - 1.047 - 0.013
(3.97)

50 jiM 1.29 94.26 - 1.178 - 0.013
(11.58)

* Mean amol-cell-1 values, standard deviation given in parentheses.

For comparison, the cellular iron quota of Thalassiosira weissflogii has been

calculated to be from 100-200 amol-cell-1 (Harrison & Morel 1986). Here, T.

weissflogii cells grown at 1 to 50 gM added Fe contain 65.49-94.26 amol of

ferredoxin, each molecule of which contains 2 Fe atoms, yielding 131-188.5

amol Fe contained in ferredoxin - a significant portion of the cell's total iron

quota.
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