15,149 research outputs found

    Hydrostatic pressure transducers of carbon and ytterbium Final report

    Get PDF
    Hydrostatic pressure coefficients of electrical resistivity for carbon and ytterbium pressure transducer

    Some observations on the renormalization of membrane rigidity by long-range interactions

    Full text link
    We consider the renormalization of the bending and Gaussian rigidity of model membranes induced by long-range interactions between the components making up the membrane. In particular we analyze the effect of a finite membrane thickness on the renormalization of the bending and Gaussian rigidity by long-range interactions. Particular attention is paid to the case where the interactions are of a van der Waals type.Comment: 11 pages RexTex, no figure

    Renormalization of Drift and Diffusivity in Random Gradient Flows

    Full text link
    We investigate the relationship between the effective diffusivity and effective drift of a particle moving in a random medium. The velocity of the particle combines a white noise diffusion process with a local drift term that depends linearly on the gradient of a gaussian random field with homogeneous statistics. The theoretical analysis is confirmed by numerical simulation. For the purely isotropic case the simulation, which measures the effective drift directly in a constant gradient background field, confirms the result previously obtained theoretically, that the effective diffusivity and effective drift are renormalized by the same factor from their local values. For this isotropic case we provide an intuitive explanation, based on a {\it spatial} average of local drift, for the renormalization of the effective drift parameter relative to its local value. We also investigate situations in which the isotropy is broken by the tensorial relationship of the local drift to the gradient of the random field. We find that the numerical simulation confirms a relatively simple renormalization group calculation for the effective diffusivity and drift tensors.Comment: Latex 16 pages, 5 figures ep

    Correlation of finite-element structural dynamic analysis with measured free vibration characteristics for a full-scale helicopter fuselage

    Get PDF
    The correlation achieved with each program provides the material for a discussion of modeling techniques developed for general application to finite-element dynamic analyses of helicopter airframes. Included are the selection of static and dynamic degrees of freedom, cockpit structural modeling, and the extent of flexible-frame modeling in the transmission support region and in the vicinity of large cut-outs. The sensitivity of predicted results to these modeling assumptions are discussed. Both the Sikorsky Finite-Element Airframe Vibration analysis Program (FRAN/Vibration Analysis) and the NASA Structural Analysis Program (NASTRAN) have been correlated with data taken in full-scale vibration tests of a modified CH-53A helicopter

    Perturbation theory for the effective diffusion constant in a medium of random scatterer

    Full text link
    We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random media. The random media contains point scatterers of density ρ\rho uniformly distributed through out the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalisation group approach based on thinning out the scatterers, this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme its predictions are confronted with results obtained by numerical simulation.Comment: 22 pages, 6 figures, IOP (J. Phys. A. style

    Shell Model Monte Carlo method in the pnpn-formalism and applications to the Zr and Mo isotopes

    Full text link
    We report on the development of a new shell-model Monte Carlo algorithm which uses the proton-neutron formalism. Shell model Monte Carlo methods, within the isospin formulation, have been successfully used in large-scale shell-model calculations. Motivation for this work is to extend the feasibility of these methods to shell-model studies involving non-identical proton and neutron valence spaces. We show the viability of the new approach with some test results. Finally, we use a realistic nucleon-nucleon interaction in the model space described by (1p_1/2,0g_9/2) proton and (1d_5/2,2s_1/2,1d_3/2,0g_7/2,0h_11/2) neutron orbitals above the Sr-88 core to calculate ground-state energies, binding energies, B(E2) strengths, and to study pairing properties of the even-even 90-104 Zr and 92-106 Mo isotope chains

    Shell Model Monte Carlo Investigation of Rare Earth Nuclei

    Get PDF
    We utilize the Shell Model Monte Carlo (SMMC) method to study the structure of rare earth nuclei. This work demonstrates the first systematic ``full oscillator shell plus intruder'' calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole hamiltonian are compared with mean field and SPA approximations in several Dysprosium isotopes from A=152-162, including the odd mass A=153. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data.Comment: 40 pages; 24 figures; 2 tables. Update includes correction of figure labe
    corecore