25,370 research outputs found

    Gamow-Teller GT+ distributions in nuclei with mass A=90-97

    Full text link
    We investigate the Gamow-Teller strength distributions in the electron-capture direction in nuclei having mass A=90-97, assuming a 88Sr core and using a realistic interaction that reasonably reproduces nuclear spectroscopy for a wide range of nuclei in the region as well as experimental data on Gamow-Teller strength distributions. We discuss the systematics of the distributions and their centroids. We also predict the strength distributions for several nuclei involving stable isotopes that should be experimentally accessible for one-particle exchange reactions in the near future.Comment: 9 pages, 10 figures (from 17 eps files), to be submitted to Phys.Rev.C; corrected typos, minor language change

    Locally Complete Path Independent Choice Functions and Their Lattices

    Get PDF
    The concept of path independence (PI) was first introduced by Arrow (1963) as a defense of his requirement that collective choices be rationalized by a weak ordering. Plott (1973) highlighted the dynamic aspects of PI implicit in Arrow's initial discussion. Throughout these investigations two questions, both initially raised by Plott, remained unanswered. What are the precise mathematical foundations for path independence? How can PI choice functions be constructed? We give complete answers to both these questions for finite domains and provide necessary conditions for infinite domains. We introduce a lattice associated with each PI function. For finite domains these lattices coincide with locally lower distributive or meet-distributive lattices and uniquely characterize PI functions. We also present an algorithm, effective and exhaustive for finite domains, for the construction of PI choice functions and hence for all finite locally lower distributive lattices. For finite domains, a PI function is rationalizable if and only if the lattice is distributive. The lattices associated with PI functions that satisfy the stronger condition of the weak axiom of revealed preference are chains of Boolean algebras and conversely. Those that satisfy the strong axiom of revealed preference are chains and conversely.

    Effective diffusion constant in a two dimensional medium of charged point scatterers

    Full text link
    We obtain exact results for the effective diffusion constant of a two dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure

    Tapping Thermodynamics of the One Dimensional Ising Model

    Full text link
    We analyse the steady state regime of a one dimensional Ising model under a tapping dynamics recently introduced by analogy with the dynamics of mechanically perturbed granular media. The idea that the steady state regime may be described by a flat measure over metastable states of fixed energy is tested by comparing various steady state time averaged quantities in extensive numerical simulations with the corresponding ensemble averages computed analytically with this flat measure. The agreement between the two averages is excellent in all the cases examined, showing that a static approach is capable of predicting certain measurable properties of the steady state regime.Comment: 11 pages, 5 figure

    Perturbation theory for the effective diffusion constant in a medium of random scatterer

    Full text link
    We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random media. The random media contains point scatterers of density ρ\rho uniformly distributed through out the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalisation group approach based on thinning out the scatterers, this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme its predictions are confronted with results obtained by numerical simulation.Comment: 22 pages, 6 figures, IOP (J. Phys. A. style

    Continuum Derrida Approach to Drift and Diffusivity in Random Media

    Full text link
    By means of rather general arguments, based on an approach due to Derrida that makes use of samples of finite size, we analyse the effective diffusivity and drift tensors in certain types of random medium in which the motion of the particles is controlled by molecular diffusion and a local flow field with known statistical properties. The power of the Derrida method is that it uses the equilibrium probability distribution, that exists for each {\em finite} sample, to compute asymptotic behaviour at large times in the {\em infinite} medium. In certain cases, where this equilibrium situation is associated with a vanishing microcurrent, our results demonstrate the equality of the renormalization processes for the effective drift and diffusivity tensors. This establishes, for those cases, a Ward identity previously verified only to two-loop order in perturbation theory in certain models. The technique can be applied also to media in which the diffusivity exhibits spatial fluctuations. We derive a simple relationship between the effective diffusivity in this case and that for an associated gradient drift problem that provides an interesting constraint on previously conjectured results.Comment: 18 pages, Latex, DAMTP-96-8

    A comparison of calculated and measured background noise rates in hard X-ray telescopes at balloon altitude

    Get PDF
    An actively shielded hard X-ray astronomical telescope has been flown on stratospheric balloons. An attempt is made to compare the measured spectral distribution of the background noise counting rates over the energy loss range 20-300 keV with the contributions estimated from a series of Monte Carlo and other computations. The relative contributions of individual particle interactions are assessed

    Solution of large scale nuclear structure problems by wave function factorization

    Full text link
    Low-lying shell model states may be approximated accurately by a sum over products of proton and neutron states. The optimal factors are determined by a variational principle and result from the solution of rather low-dimensional eigenvalue problems. Application of this method to sd-shell nuclei, pf-shell nuclei, and to no-core shell model problems shows that very accurate approximations to the exact solutions may be obtained. Their energies, quantum numbers and overlaps with exact eigenstates converge exponentially fast as the number of retained factors is increased.Comment: 12 pages, 12 figures (from 15 eps files) include

    Personalized Ranking for Context-Aware Venue Suggestion

    Full text link
    Making personalized and context-aware suggestions of venues to the users is very crucial in venue recommendation. These suggestions are often based on matching the venues' features with the users' preferences, which can be collected from previously visited locations. In this paper we present a novel user-modeling approach which relies on a set of scoring functions for making personalized suggestions of venues based on venues content and reviews as well as users context. Our experiments, conducted on the dataset of the TREC Contextual Suggestion Track, prove that our methodology outperforms state-of-the-art approaches by a significant margin.Comment: The 32nd ACM SIGAPP Symposium On Applied Computing (SAC), Marrakech, Morocco, April 4-6, 201
    corecore