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Abstract

The concept of path independence (PI) was first introduced by Arrow (1963) as a

defense of his requirement that collective choices be rationalized by a weak ordering.

Plott (1973) highlighted the dynamic aspects of PI implicit in Arrow’s initial discussion.

Throughout these investigations two questions, both initially raised by Plott, remained

unanswered.  What are the precise mathematical foundations for path independence?

How can PI choice functions be constructed?  We give complete answers to both these

questions for finite domains and provide necessary conditions for infinite domains.  We

introduce a lattice associated with each PI function.  For finite domains these lattices

coincide with  locally lower distributive or meet-distributive lattices and uniquely

characterize PI functions.  We also present an algorithm, effective and exhaustive for

finite domains, for the construction of PI choice functions and hence for all finite locally

lower distributive lattices.  For finite domains, a PI function is rationalizable if and only if

the lattice is distributive.  The lattices associated with PI functions that satisfy the

stronger condition of the weak axiom of revealed preference are chains of Boolean

algebras and conversely.  Those that satisfy the strong axiom of revealed preference

are chains and conversely.
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§1.  INTRODUCTION.

The foundation for economic analysis is the act of choice.  In modeling choice, it is

standard to impose “consistency” or “path independence” requirements on how the

choice made in one situation is related to the choice made in a similar situation.  The

results presented here identify the mathematical foundations for path independent choice.

Specifically, given a few assumptions for arbitrary sized domains, we identify the

necessary structure of path independent choice.  This structure is that of the class of

lattices having the property that each element is the join of a unique minimal set of join

irreducible elements.  For a set assigned a choice this unique minimal set of join

irreducibles is the choice made from the set.  For finite domains this coincides with the

class lattices called lower locally distributive by Monjardet (1990) or meet-distributive by

Edelman (1986).1  We also provide refinements identifying the necessary structures for

each major sub-category of path independence over infinite domains, Path Independent

(PI), Rationalizable PI, Weak Axiom of Revealed Preference (WARP) and Strong Axiom of

Preference (SAP).  On finite domains these results are both necessary and sufficient

characterizations for each category of path independent choice functions.  Further, we

offer an algorithm to construct all path independent choice functions on a finite domain

and hence all finite locally lower distributive lattices.2

We mention three aspects of the fact that the fundamental structure of PI choice

functions is revealed as a lattice.  First, lattices exhibit the ordering properties commonly

found in economic choice models.  Specifically, the join (Plott’s operation) and the meet

(induced by the requirements of path independence) operations identify respectively the

least upper bound and the greatest lower bound for any pair of elements.  Second, the

quotient property identified in Theorem 1 entails a simplification of the choice process by

identifying an interval (defined by a biggest set and a smallest set and every set in

between) for which the same choice is always made.  Third, a similar simplicity property

is present in the link between rationalizable path independent choice functions and

distributive lattices.  The question spotlighted is, when is the choice set itself a “sufficient

statistic” for the choice process from some feasible set.  For rational PI choice functions,

the choice set is a “sufficient statistic” but for non-rationalizable PI choice functions, the

choice set is not “sufficient.”

1
 We thank the referees who pointed out, during the review process for an early version of this

paper, the coincidence of choice lattices over finite domains and lower locally distributive
lattices.
2
 These results for finite domains were reported in Johnson and Dean (1996).  Koshevoy

(1998) has obtained independently the characterizations for PI and Rationalizable PI
functions over finite domains.

2



 The application of path independence to economics begins with Arrow (1963)

who used the concept to defend his requirement that collective choices be rationalized

by a weak ordering.  Since then a number of advances were made, notably Sen’s (1970)

decompositions of path independence into alternative variants of “path independence”

(e.g., his properties α, β and γ) and Suzumura’s (1983) extention of the path

independence concept into non-finite domains.  Theorem 1 presents still another such

variant true for the infinite domains we consider.

During these early investigations two questions addressed here were raised.

First, what are the precise mathematical foundations for path independence.  Plott (1973)

provided an initial step toward answering this question by demonstrating a semigroup

property (especially associativity) in path independent choice functions but Johnson

(1990) demonstrated that the semigroup property was not sufficient.3  Second,

identification of non-rationalizable path independent choice functions raised the question

of how can PI choice functions can be constructed.  Although rationalizable choice

functions can be constructed from their relations, there has been no easy means of

constructing non-rationalizable path independent choice functions.

Algebraic properties have been used by others, including Kelly (1984), Aizerman

(1985), Sertel (1988), and Sertel and Van Der Bellen (1979).  Aizerman deletes the empty

set and adds an identity element to Plott’s system.  For us, a choice function is a mapping

from a portion of the power set of the universal set (including the empty set) into itself.

The empty set is the identity element in a subsystem of Plott’s original semigroup and so

permits construction of the choice lattice.  Because of differing treatment of the empty

set, our choice lattices cannot be observed in the Aizerman framework.

The main results provided here differ from previous contributions in that path

independent choice functions are characterized by purely mathematical properties (e.g.,

Theorem 2) and by identifying a specific mathematical structure with each class of path

independent choice functions.  Our structural results are of two types; (1) necessary

strictures on sets of arbitrary size and (2) complete characterization of the mathematics

on finite sets.  For each type, we provide results for the four main classes of choice

functions.  To obtain these results, we make four assumptions about the domain of the

choice function; loosely, these assumptions are a refinement of those Suzumura (1983)

adopted in his investigations of path independence on large sets.

3
 Notably, Plott also suggested that the semigroup property he identified might be useful for

extending the concept of path independence to non-finite domains.  Our results lend support
to his conjecture.
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Malishevski (1994) studied the algebra considered by Plott and Johnson (1990,

1995) focusing on alternative operations rather than the implied structure.  Johnson

(1994) identified a link between PI choice functions and lattices and provided

characterization results for the lattices associated with WARP and SAP choice functions

on finite domains.  Johnson and Dean (1996) provided complete characterization of the

choice lattices for these four classes on finite domains.  Additionally, they provided an

algorithm for constructing all finite choice lattices.

Concurrent with these economic developments, the mathematics of lower locally

distributive lattices was being developed.  See the excellent survey articles by Monjardet

(1990) and Edelman (1986).  Koshevoy (1998) noted that these lattices may be

considered from within the theory of convex geometries.  He exploits this connection to

establish the representation theorems for finite path independent choice functions and for

finite rational choice functions from the perspective of the theory of convex geometries.

For finite domains Koshevoy establishes the content of our Theorems 3, 4, 9 and 10.

The present exposition retains the intent of Johnson and Dean (1996) to make

these algebraic (lattice) interpretations accessible to those interested in choice theory.

For this reason we include proofs of results which could be derived from the convex

geometry approach of Koshevoy just so they might be more easily assimilated.  But more

than that, our attack yields the results on WARP and SAP functions valid for infinite sets

V.  These results are not included in Koshevoy (1998).  Our approach also leads to an

algorithm for the construction of all PI choice functions on a finite set.

The algorithm starts with the identity choice function on a finite set V whose

choice lattice is the Boolean algebra of all subsets of V.  We show that through a

sequence of contractions every PI choice function on V is constructed.  We identify a link

between our contraction operation and the deletable elements identified by Bordalo and

Monjardet (1996). These contractions are reversible and therefore an alternative

approach to constructing a PI  choice function is to start from a total order and complete a

sequence of expansions. Since finite choice lattices coincide with locally lower

distributive lattices this algorithm gives a method of constructing all finite locally lower

distributive lattices.

This paper is structured as follows.  Section 2 contains preliminary definitions,

notations and a characterization of PI choice functions using the quotient property.

Choice lattices are introduced in Section 3 and examples are provided.  Notably, while an

exhaustive listing of choice lattices on 3 elements is offered, many of the examples

provided do not assume finiteness.  In Section 4 we give representation theorems for

general choice functions.  Section 5 details the construction of all PI choice functions on a
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finite set.  In Section 6 we study rational path PI functions.  Section 7 applies these

results to WARP and SAP choice functions.  A summary and discussion is presented in

Section 8.   Long proofs and technical lemmas are given in the Appendix. Routine proofs

have been omitted.  All proofs are available from the authors.

§ 2.  PRELIMINARY RESULTS .

Following Suzumura (1983) we start from a universal set V of alternatives, and a

collection V of subsets of V on which choices are to be made.  We denote by 2V the

Boolean algebra of all subsets of V under set inclusion.  Set inclusion is denoted by (⊆)

and set containment by (⊇).  Set union is denoted by (∪) and set intersection by (∩).  If K

is a collection of sets, ⋃K denotes the set union of these sets; }K denotes their set

intersection.  The empty set is denoted by ∅.  If V ⊇ A ⊇ B we denote by the quotient A/B

the set {X: A⊇X⊇B}, sometimes called an interval in the Boolean algebra 2V.

 We make a selection of the subsets of V for which a choice is assigned.  Let V

denote the subsets of V comprising the domain of a choice function.  Adopting

Suzumura’s (1983) property (a) and an extension of his property (b) we assume :

(a) V contains the empty set and all finite subsets of V.

(b) If A and B are sets in V then A∪B and A∩B are in V.

From (a), if V is finite the domain V of the choice function is 2
V
.

Definition 1. A choice function C on V is a function with domain V into 2V satisfying the

following properties.

(i) For all subsets A ∈V, C(A) ∈V and C(A) ⊆ A.

(ii) C(A) = ∅ if and only if A = ∅.

In this paper C always denotes a choice function, R will denote its range of.  We

often refer to the inverse sets under a choice function C.  Suppose that A ∈ V.  Let

arc(C(A)) = {X ⊆V: X ∈V and C(X) = C(A)} .

When V is infinite we assume two additional closure properties about the choice

function C and the domain  V of subsets of V on which C is defined.

(c) If A ∈ V then ⋃arc(C(A)) ∈V.

(d) If A ∈ V and C(A) ⊇ B then B ∈V.

In view of properties (i) and (b), if A and B both belong to V then so do C(A),

C(B), A∪B, and C(A∪B), and A∩B and C(A∩B).  Note that if V is finite, properties (b) –

(d) follow directly from property (a).
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Definition 2. A choice function is called path independent (PI) if for all A, B ∈V,

C(A∪B) = C(C(A)∪C(B))

Definition 3.  A choice function on a set V with domain V is called locally complete if

properties (a) - (d) hold with respect to C and V.

Properties (c) and (d) are natural from a choice function perspective.  Property

(c) states that if a choice C(A) is made from A, i.e., A∈V, then a choice can be made

from the union of all the sets in arc(C(A)), i.e., ⋃arc(C(A)) ∈ V.  Lemma 4 shows that

for PI choice functions this choice must be C(A).

 Property (d) implies that if A ∈ V and the choice function is an identity on a set

A, i.e., C(A) = A then any subset of A is also in V.  Lemma 6 says that if C is PI then the

choice function is the identity function on any subset of A ,i.e., If C(A) ⊇ B, then C(B) = B.

Lemmas 2, 4 and 6 suggest that while, for PI choice functions, properties (c) and

(d) are not restrictive they do have consequences.  For example, Plott (1973) showed by

mathematical induction that path independence could be extended to finite collections of

sets.  Our Lemma 5 extends this result to any collection of sets in V of arbitrary size.4

LEMMA 1: Let C be a  locally complete PI choice function on V with respect toV.

For all A ∈V, C(A) ∈ V and C(C(A)) = C(A).

We say that C is an idempotent function.

LEMMA 2: (Aizerman’s Axiom): Let C be a locally complete PI choice function on V with

respect toV.

If A, B ∈V and if A ⊇ B ⊇ C(A) then B∈ arc(C(A)).

LEMMA 3: (Chernoff’s Axiom): If C is a locally complete PI choice function on V with

respect toV then C satisfies Chernoff’s Axiom:

If A , B ∈ V and A⊆B then C(A) ⊇C(B)∩A.

The next lemma describes inverse sets under a PI choice function.

LEMMA 4: (Quotient Property): Let C be a locally complete PI choice function on V with

respect toV.  Let A ∈R.  Let A^ = ⋃ arc(A).  Then

arc(A) = {X ∈V: A^⊇X⊇A}.

4 One referee remarked that Lemma 5 is a kind of “continuity” for choice lattices.  As Example
12 shows, it is not sufficiently strong to require infinite choice lattices to be compactly
generated in the sense of Dilworth (1960).
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Note that if V is finite then arc(A) is the entire quotient A^/A.  This feature of PI

choice functions is illustrated in the Appendix (Figures 15a and 15b) using Example 7

(Figure 7) of the next section.  Further, if V is finite, Lemma 4 shows that the map A→A^

is a closure operator on V.  This observation is fundamental in Koshevoy (1998) as it

presents the choice lattice as the lattice of sets closed under this operator.  However, as

our example 8 shows, if A is infinite A^ need not be defined.

Lemma 4 along with Chernoff’s Axiom leads us to the following equivalence result

which is important because we find many instances when the proofs are made

transparent by this alternate characterization of PI functions.

THEOREM 1:  Let C be a locally complete choice function on V with respect toV.  The

function C is path independent if and only if it satisfies Chernoff’s Axiom and the

Quotient property.

LEMMA 5: (Extension of PI): Let C be a locally complete PI choice function on V with

respect toV.  Let  K be a collection of subsets K, K∈V,  such that  ⋃K∈V
and ⋃{C(K): K ∈ K } ∈V  then

C(⋃K ) = C(⋃{C(K) : K∈K}).

Application of Chernov’s Axiom leads to Lemma 6.

 LEMMA 6: (Hereditary Identity):  Let C be a locally complete PI choice function on V with

respect toV.  If  A ∈V and C(A)⊇ B then C(B) = B.

Plott (1973) identified the binary product operation (•) defined by

A•B = C(C(A)∪C(B)).

The connection between path independence and this operation was one of the

significant contributions of Plott who in his 1973 paper proved that his operation (•) was

associative.  We restate this result as Lemma 7 without further proof.  Johnson (1995)

showed for finite V that if C is PI then <R, •> is an idempotent commutative semigroup

with identity (∅) and null element (C(V)) if V ∈ V and, hence, a lattice.  This remains true

for V infinite.  Because of  property (b), R  is closed under the Plott product and  if A ∈

R  then A•A = A.  Algebraically speaking, A is an  idempotent under the operation (•).

Note that if A and B are sets in  R then

A•B = C(A∪B).
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LEMMA 7: (Associativity): Let C be a PI choice function on V with domain V satisfying

properties (a) – (d).  For all sets X,Y and Z ∈V , (X•Y)•Z = X•(Y•Z).

§3.  CHOICE LATTICES.

We have noted that the range of the choice function forms a commutative

idempotent semigroup under the Plott product (•).  The crucial part of this structure is the

associativity of the Plott product.  In this section we show how the Plott product and its

associativity lead to the construction of a lattice, which we call the choice lattice of the

path independent choice function.

It is known (Clifford and Preston (1961)) that any idempotent commutative

semigroup with an operation (◦) becomes an upper semilattice in which the join of two

elements A, B is A◦B.  In Lemmas 8 and 9 (see Appendix) we specialize this result to the

semigroup <R, •>.  These lemmas determine the least upper bound, A∨B, of two

elements in the choice lattice and the greatest lower bound, A∧B, of two elements in the

choice lattice.  One may say that the natural partial order of the semilattice determines the

join of two elements, while the implications of PI determine the meets.

Our notation differentiates between set operations and lattice operations.  The

symbol (⊆) denotes set inclusion in 2V.  The partial ordering of the choice lattice is

denoted by (≤).  Set union and intersection in 2V are denoted by (∪) and (∩)

respectively, lattice join and meet are denoted by  (∨) and (∧) respectively.  If C is a

locally complete choice function with respect to  V we shall always denote ⋃arc(C(A))

as A^.  The main theorem of this section is the following:

THEOREM 2: Let C be a locally complete PI choice function on V with respect toV  The

range R  forms a lattice in which:

(i) The lattice join of A and B is A∨B = A•B = C(A∪B).

(ii) The lattice meet of A and B is A∧B = C(A^ ∩ B^).

We  refer to this lattice as the choice lattice for C.

In general a choice lattice is not a complete lattice (see example 8).  Local

completeness does however give the partial results of Lemma 10.

LEMMA 10: Let C be a locally complete PI choice function on V with respect toV.  Let  K

be any set of elements in R. If ⋃K belongs to V then C(⋃K) is the least upper

bound for K in the choice lattice.
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If A is a set of elements in a lattice it is convenient to write ∨A for the join of all

the elements in A when this join exists.  If A is finite then this join always exists.  Dually

we write ∧A for the meet of all the elements of A when it exists, as it does if A is finite.

Lemma 10 has two immediate corollaries.

COROLLARY 1:  If A∈V  then C(A), as an element of the choice lattice, is the least upper

bound of {{x} :  x∈ A}.

C(A)  = ∨A.

COROLLARY 2:  If V = 2V then the choice lattice is a complete lattice.

For  elements of the lattice, A and B, it is not the case that A≥B in the choice lattice

entails A⊇B as sets in the domain (e.g., Example 1 where {1,3} ≥{1,2}).  However the

following lemma holds.

LEMMA 11: Let C be a locally complete PI choice function on V with respect toV.

A≥B holds in the choice lattice if and only if A^⊇ B^ holds in 2V.

COROLLARY 3:  If C is a locally complete rational PI choice function  on V with respect to V
and A and B  are elements R then (A∧B)^ = A^∩B^.

 In view of Corollary 1, the choice lattice contains the representation information

(much like the binary relation for rational choice functions), it is often convenient to make

a diagram of a finite lattice.  The following convention is in common use.  First, it is helpful

to know when an element is covered by another.  If x and y are distinct elements we say

x is covered by y (or y covers x) if x≤y and there is no element “between” x and y, that

is, if x≤z≤y then either x = z or z = y.  Now to make the diagram, use a circle for each

element, placing the circle for an element x below the circle for an element y on the page

if x is covered by y and draw a line from x to y.

EXAMPLE 1:  Let V = {1,2,3}  Define a choice function as follows.  Let

C{V) = C({1,3}) = {1,3} ; otherwise let C(A) = A.

Thus R consists of the subsets with fewer than three elements.

Since Arc({1,3}) = {1,2,3}/{1,3} and otherwise arc(A) = A/A, the Quotient Property

holds.  Chernoff’s Axiom also can be easily verified and so C is PI.

 From Lemma 8 we know that C(V)= {1,3} is the top element and that ∅ is the

bottom element of the lattice.  For any two element subset, {x,y}, we have
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 {x,y} = {x }∨{y}.  With this knowledge we may make a lattice diagram.
{1,2,3}/{1,3}

{2,3}/{2,3}{1,2}/{1,2}

{2}/{2} {3}/{3}{1}/{1}

∅

FIGURE 1: Choice lattice for Example 1.

EXAMPLES 2-7:  Figures 2 – 7 show  choice lattices of PI functions defined on the same

domain as in Example 1.  Each lattice is the choice lattice of a specific choice function

whose definition can be read from the labels of the elements.  Each element A of the

lattice is labeled with the element of R that it represents.  The quotient A^/A that it

represents is given in parentheses unless A^ = A.  The almost redundant braces and

commas have been deleted to simplify the diagram.  Thus, in Figure 7, the element labeled

“1 (123/1)” conveys the information that the choice function giving rise to this lattice maps

the quotient {1,2,3}/{1} to {1}.  All of the Figure 7 quotients are depicted graphically in

Figures 15a and 15b presented at the beginning of the Appendix.  It will follow from

Theorem 7 that every choice lattice of a PI choice function on the universal set {1,2,3} is

isomorphic to one of these six lattices.

Extension of these principles to other finite sets is straightforward.  For larger

sets, see examples 8 through 13. Examples 8, 9, 10 ,12 and 13 have infinite ascending

chains.  Examples 11 and 13 have infinite descending chains. In examples 8 through 12

the underlying set V is the infinite set of positive integers.

EXAMPLE 8:  Let V be the set of finite subsets of V.  For a finite subset A, C(A) = the

greatest integer in A, or ∅ if A = ∅.  Properties (a) – (d) are easily verified.  For an

integer k,  arc({k}) = {1, . . . , k}/{k}.  The choice lattice is an infinite ascending chain

without a maximal element.  Note that the universal set V is not a member of V.

∅ < {1} < {2} < . . .

EXAMPLE 9:  As in Example 8, let V be the collection of finite subsets of the positive

integers V.  For A ∈ V let C(A) = {minA, maxA}  if A ≠∅.  (One may think of this as a

consumer selecting coffee with alternatives of cream and sugar.  Either the consumer

prefers coffee black (espresso) or with the maximum of cream and sugar

10



∅

123

12 13 23

1 2 3

Figure 2

13  (123/13)

12 23

1
2

3

∅
Figure 3

∅

13 (123/13)

(12/1) 1 23

2 3

Figure 4

(12/1) 1

13 (123/13)

3 (23/3)

2

Figure 5

∅

2

1 (123/1)

23

3

∅

Figure 6
1 (123/1)

3 (23/3)

∅

Figure 72
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available(latte)!  A straight-forward verification shows that properties (a) -(d) hold and

that arc({r,s}) = [r,s]/{r,s}  where [r,s] = {t: r≤t≤s}.

{3,5} . . .

{4,5} . . .{3,4}

21

∅

3 4 5 . . .

{2,3}{1,2}

{1,3} {2,4}

{1,4} {2,5} . . .

W(0)

W(1)

W(2)

W(3)

FIGURE 8

As shown in Figure 8, the lattice consists of rows W(k), for k = 0,1,..., whose

elements are  {a, a+k: a = 1, 2, 3, ...}.  Thus W(0) consists of the join irreducibles {a}.

There are many sublattices isomorphic to the non-distributive lattice of Figure 1.  If r < s <t

then {r, s,t} generate such a lattice.

EXAMPLE 10:  The set V is the set of all finite subsets of V together with all subsets of V

containing the integer 1.  Thus A∈V if and only if 1∈ A or A is finite.

Verification of property (a) is immediate.

If A, B ∈V then A∪B ∈V if both A and B are finite or if 1 is contained in either A

or B.  A∩B ∈V if one is finite or if both contain 1.  So Property (b) holds.

For A ∈ V define

 C(A)= ∅ if A = ∅,

C(A) = 1 if 1 ∈ A, and

C(A)  equals the greatest integer in A if 1 ∉ A.

Compute that arc({1}) = V/{1} while arc({k}) = {2, . . . ,k}/{k} if k ≥ 2.  Property (c) holds

since we have determined arc(C(A)) for all A ∈V and we see that ⋃arc(C(A)) is in V.

Property (d) follows from similar observations.  The choice lattice is an infinite ascending

chain,

∅ < {2} < {3} < .  .  . < {1}

with top element {1}.

EXAMPLE 11:  The set V is now the set of all subsets of V.  For a non-empty subset

12



 A ⊆ V, C(A) = the least integer in A.  Again it is easy to see that all properties (a) – (d)

are satisfied for V.  For an integer k, arc({k}) = {k, k+1,...}/{k}.

The choice lattice is an infinite descending chain:

{1} > {2} > . . . >{k} >{k+1} > . . . > ∅.

The next example is a generalization of  Example 1.  In this example the roles

played by the elements 2 and 3 in Example 1 have been interchanged to make the

definitions of the choice function in Example 12 seem more natural.

{5}

{4}

∅

{3}

{1,4}

{1}

{1,3}

{2,4}

{2}

{2,3}

{1,2}=C(V)

FIGURE 9:  A schematic diagram of the choice lattice of Example 12

 EXAMPLE 12:  The class of sets V consists of all finite sets and any (infinite) set

containing {1,2}.  The verification that properties (a) and (b) hold is similar to the

preceding example.  The choice function is defined as follows:

If A ⊇ {1,2} define  C(A) =  {1,2}

If A ¶ {1,2}, define   C(A) = ({1,2}∩A)∪{largest integer in A}

Note that the range of C is either the empty set, a singleton, or a doubleton.  We

compute the inverse sets:

arc({k}) = {k} if k = 1 or 2 and = {3, …k}/{k} if k ≥ 3.

arc({a,k}) = {a, 3,…, k}/{a,k} for a = 1 or 2 and k ≥ 3

arc({1,2}) = V/{1,2].

Now the arguments that properties (c) and (d) hold are similar to those for

Example 10.  The lattice is depicted in Figure 9.

We observe  that the elements {1} (and {2}) are not compact in the sense of

Dilworth (1960) because {1} <  {1,2} = ∨{{k:k ≥ 3}   but {1} is not contained in the join of

any finite subset  of {{k:k ≥ 3}. Thus this lattice is not compactly generated.
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EXAMPLE 13:  This is the continuous analogue of Example 9.  Let V be the set of real

numbers [0,1] = {r: 0≤r≤1}.  Let V be the set of closed subsets of V.  If A is a non-

empty closed set let C(A) = {minA, maxA}.  Another straight-forward verification shows

that properties (a) - (d) hold.  Again arc(A) = [minA,maxA]/{minA, maxA}.  The lattice

consists of rows indexed W(k) where now k is any real number in [0,1].  Hence there is

a continuum of rows.  Also, each row is a continuum consisting of {{a, a+k}: a,k ∈ [0,1])}.

As in Example 9 there is a sublattice isomorphic to the lattice of Example 1.

§4.  REPRESENTATIONS.

In this section we show that finite choice lattices coincide with lower locally

distributive lattices.  But more generally even when V is infinite (and the choice function

is a locally complete PI choice function on V with respect toV) we show that each

element of a choice lattice can be represented in a unique way as the join of join

irreducible elements.5  For finite lattices this is one of the equivalent characterizations of

locally lower distributive lattices (see Monjardet (1990) or Edelman (1986)).

An element x of a lattice is called join irreducible if x = a∨b implies x = a or x = b.

It is traditional not to call the bottom element (if it exists) of a lattice a join irreducible

element.  Dually, an element y of a lattice is called meet irreducible if y is not the top

element of the lattice and y = a∧b implies y = a or y=b.

In a finite lattice join irreducible elements always exist and every element is the

join of the set of join irreducibles below it in the lattice.  Infinite lattices may not have that

property.  The join irreducible elements of a choice lattice are easily identified.

LEMMA 12: (Identification of join irreducibles): Let C be a locally complete PI choice

function on V with respect toV.  The join irreducibles of its choice lattice L are the

singleton sets {x} for all x∈V.

In connection with Corollary 1, this lemma shows that in a choice lattice

every element is the join of the set of join irreducibles below it in the choice lattice.  This

holds true whether or not V is finite.  As an example of this lemma, consider again the

choice lattice of Figure 1.  There the top element {1,3} is the join of the join irreducibles

{1}, {2}, and {3}.  However in that join, {2} is redundant; {1,3} = {1} {2}∨{3} = {1}∨{3}.

In the next lemma we show that redundant elements can always be deleted and that

when all redundancy is gone, the representation is unique.

5
 The situation is similar to the way an integer can be represented as the product of primes.

For lattices we may think of the “primes” as being the join irreducible elements.
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The representation of an element of the lattice as the join of irreducibles is given in

the next lemma.  The terms “minimal” and “unique” are descriptive, standard terms in

lattice theory and are made clear in the proof of the theorem.

THEOREM 3: (Representation of elements in the choice lattice): Let C be a locally

complete PI choice function on V with respect toV.  Every element in the choice

lattice can be uniquely expressed as the join of a minimal set of join-irreducibles.

 COROLLARY 4.  Every choice lattice arising from a PI choice function on a finite domain is

locally lower distributive.

 We conclude this section with a representation theorem (Theorem 4) which, in

conjunction with Theorem 3, characterizes the class of finite choice lattices.  For this

result we need another lemma which strengthens Corollary 1.  This lemma is valid for

infinite sets V.

LEMMA 13: (Identification of A^ from the choice lattice): Let C be a locally complete PI

choice function on V with respect toV.  For any  element  A ∈R,

A^ = {x ∈ V: A≥{x}}

In lattice terms A^ is the set of join irreducibles below A in the choice lattice.  One

payoff of this result is that the quotients of the choice function and therefore the choice

function itself may be reconstructed from the choice lattice.  A corollary is that two

choice functions with isomorphic choice lattices are isomorphic.

The converse of Theorem 3 is the following strong representation theorem.  We

can prove it only when V is finite.  It characterizes those finite lattices which can arise as

choice lattices.  For a constructive proof of this result see Johnson and Dean (1996).  For

a derivation from the perspective of convex geometry, see Koshavoy (1998).

THEOREM 4: Every finite lattice in which every element has a unique representation as the

join of an irredundant set of join irreducibles is the choice lattice for a PI choice

function.

§5.  CONTRACTIONS AND EXPANSIONS.

In this section we consider only finite sets.  We establish two important ways to

modify a PI function.  Theorem 5 shows how certain elements may be deleted from the

lattice and  Theorem 6 shows how certain elements may be inserted in the lattice and so

15



modify the choice function but still keeping its path independence and the same set of join

irreducible elements.  Indeed, each process can be used to undo the other.

We show that any PI function on a domain V consisting of n elements can be

constructed by a sequence of contractions (Theorem 5) beginning with the Boolean

algebra, 2
V
, or alternatively from a sequence of expansions (Theorem 6) beginning with

the total ordering (chain) of n elements.

We call attention to two technical lemmas given in the Appendix.  Lemma 14

describes coverings in a choice lattice and is needed for the proof of Theorem 5.  Lemma

15 shows that the contraction described in Theorem 5 is equivalent to one of the

deletions described by Bordalo and Monjardet (1996) if V is finite.
Choice lattice for C

A=B∪{x}
(A^/A)

B  (B^/B)
{x}

B  (A^/B)

{x}

Choice lattice for C*

FIGURE 10: A comparison of the choice lattices for the choice functions C and C*.
In C the covering from A to B has been contracted to form C*.

THEOREM 5: (Contraction of a quotient):  Let C be a  PI choice function on a finite set V.

Let B be a meet irreducible element in the choice lattice that is not equal to C(V) or

to ∅.  Let A be the unique element covering B.  Suppose that A = B∪{x}.  Let the

function C* defined on V= 2V as:

C*(S) = C(S) if C(S) ≠ A,

C*(S) = B      if C(S) = A.

The function C* is a  path independent choice function with respect to V.

 We say that C* is obtained from C by contracting the quotient A/B.  Bordalo and

Monjardet (1996) say that the element B is deletable, that the choice lattice for C* is

obtained  from the choice lattice for C by deleting the element B.  It is important to note that

in the choice lattice for C* the representation of the element A or B, whichever it is called

in the modified lattice,  as the join of a unique irredundant  set of join irreducibles is still the

set B.  In symbols,  B =  ∨A in the choice lattice for C*.   These relationships are shown

schematically in Figure 10.  This also shows that the set of join irreducibles in the lattice

for C* is the same as that for C.  This fact may also be observed from the construction of

C*.
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Examples.  (Construction of Figures 2 – 7.)

Figure 2 shows the choice function for the identity (complete indifference) choice

function on {1,2,3}.  It is the Boolean algebra of all eight subsets of {1,2,3} under set

inclusion.  There are three meet irreducible elements in this lattice, each satisfying the

hypothesis of Theorem 5.  The results of contracting any one of these are isomorphic.  If

we choose to contract (123/13) we get the choice lattice of Figure 3.

In Figure 3 there are four meet irreducible elements.  The quotients 13/12 and

13/23 do not satisfy the hypothesis of Theorem 5.  However both the quotient 12/1 and

23/3 do.  Again these alternatives are isomorphic.  We have chosen to collapse 12/1.  We

get the choice lattice in Figure 4.

In Figure 4 there are three meet irreducible elements.  The quotient 13/23 does not

satisfy the hypothesis of Theorem 5.  However both 13/1 and 23/3 do satisfy the

hypothesis.  The results of collapsing these quotients are not isomorphic.  Collapsing

quotient 23/3 leads to the choice lattice in Figure 5.  Collapsing quotient 13/1 leads to the

choice lattice in Figure 6.  Note that the collapsing creates the amalgamation of the

previous quotients 123/13 and 12/1 into the quotient 123/1 of Figure 6.

In Figure 5 there are two meet irreducible quotients both of which satisfy the

hypothesis of Theorem 5.  Collapsing either leads to a choice lattice isomorphic to the one

in Figure 7.  Collapsing 13/1 leads to Figure 7.

In Figure 6 there are three meet irreducible elements however 1/23 does not fulfill

the requirements of Theorem 5.  Either 23/2 or 23/3 do and the result of either collapsing

is the four element chain of Figure 7.  Collapsing 23/2 leads to the choice lattice of Figure

7.

Since each elements of the choice lattice of Figure 7 is represented by a

singleton from V and hence is a join irreducible, no quotient will satisfy the hypothesis of

Theorem 5 and the processing of generating choice lattices on {1,2,3} ends.

In the next lemma we show that we can expand the quotients corresponding to

certain  elements.  You may find the schematic diagrams in Figure 11 depicting the choice

lattices for C, *C and 2V helpful.  We suppose that C is choice function on a finite set V

with range R.  Let B ∈R.

Under special conditions on B, we can split off an element x from arc(B) = B^/B to

form a quotient B^/A where A = B∪{x} .  Under the expanded choice function *C, arc(A)

= B^/A and arc(B) = Bc/B where Bc is the relative complement of A in B^/B.  The lattice for

*C can be obtained by inserting a new element, B∪{x} in the lattice and adding the

appropriate lines to show the new containment.
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Finally we show that performing the contraction of Theorem 5 on *C returns the

function C.

Choice lattice for *C

A (B^/A)

B (B
C
/B)

D

Choice lattice for C

B

D=D^

  B
c

  B
c

∩ A = B

  B
∧

= B
c

∪ x{ }

  A = B ∪ x{ }

  x{ }

  x{ }
  x{ }

  Thelattice2
V

FIGURE 11:  Expansion of the choice lattice for C to the choice lattice for *C.

THEOREM 6: (Expansion of a quotient): Let C be a PI choice function on a finite set V.  Let

B belong to R be such that arc(B) =B^/B properly contains B.  Choose x∈B^

satisfying the following  two conditions:  (1) x∉B and

(2)  For all sets E such that  B^⊇ E Û B∪{x}, if x ∈ E  then x ∈ C(E).

Let A = B∪{x} and let Bc be the relative complement of A in B^/B.

Define a function *C as follows:

*C(D) = A       if D ∈ B^/A

*C(D) = C(D) otherwise.     (Note that  *C(B) = B.)

(i) The function *C is a path independent choice function.

(ii) B is meet irreducible under *C and is covered by A in the choice lattice for

*C.

(iii) If a contraction is performed on *C using B and A as in Theorem 5, then

the contracted function (*C)* = C.

(iv) If C is a PI choice function and C* is the result of a contraction of the

covering A = B∪{x}/B then C* may be expanded by {x} and *(C*) = C.

Remark.  Under the notation of Theorem 6, if B is chosen to be a minimal element in the

choice lattice for C,  with respect to the condition B^≠ B, then any element x ∈ B^, x∉B

satisfies condition (2) of Theorem 6.
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THEOREM 7:  The choice lattice and hence every PI choice function on a finite set V can be

constructed by a sequence of contractions beginning with the identity choice

function.  Alternatively, every PI choice function can be constructed by a

sequence of expansions beginning with a choice function whose choice lattice is

a chain.

Here is a proof schema.  Note that neither a contraction nor an expansion

changes the set of join irreducibles.  Now consider a choice function C and its choice

lattice L.  By Theorem 6 and the remark following it, C can be expanded to a choice

function *C whose lattice contains one more element.  By further sequence of

expansions we can continue until reaching the identity function whose choice lattice is

the Boolean algebra.  This sequence will be finite if V is finite.  Then by Theorem 6 (iii)

that sequence can be reversed by a sequence of contractions described in Theorem 5 to

reach C.  Thus the process of contraction can produce any PI function.  Alternatively

from C we may carry out a sequence of contractions6 until the choice lattice becomes a

chain.  Now by Theorem 6 (iv) that sequence may be reversed by a sequence of

expansions.

An algorithm can also be provided for the construction of all PI choice functions

on a finite set V.  The algorithm proceeds by describing a definitive process, beginning

with the identity choice function, whereby all contractions of a given finite choice lattice

are constructed; a list of these lattices is built and then in an exhaustive routine, the

process repeats.  Since the number of elements in a choice lattice is decreased by 1 in

the contraction process, the algorithm ends with all possible choice lattices on V.  There

will be many isomorphic lattices generated in this way but we know of no way to

eliminate all of these in advance.  When carried out on a set of four elements this

algorithm constructs 35 non-isomorphic choice lattices.

§6.  RATIONALIZED CHOICE FUNCTIONS AND DISTRIBUTIVITY.

In this section we consider choice functions that are locally complete with respect

to a domain V and can be rationalized.  We show that these choice lattices satisfy a

strong lattice identity, the distributive law.

A lattice is said to be distributive if, for all elements a,b and c in the lattice

a∧(b∨c) = (a∧b)∨(a∧c).

6
 Unless the lattice is a chain it follows from Lemma 15 (see the Appendix) that any meet

irreducible element that is minimal in the partially ordered set of meet irreducible elements
together with its unique cover, satisfies the hypotheses of Theorem 5.
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The lattices of Figures 2, 4,5,6, 7, 8,10  and 11 are distributive.  By contrast the

choice lattice of Figure 1 (equivalently Figure 3) is not distributive because

{2} = {2}∧{1,3} = {2}∧{{1}∨{3}}

but ({2}∧{1})∨({2}∧{3}) = ∅∨∅=∅.

The value ∅ is an artifact of performing the calculation on {1,2,3}.  Examples of non-

distributivity not involving the empty set exist if V has at least 4 elements.  More important

is why the result obtains.  It occurs because {2}∧{{1}∨{3}}=C({2}^∩{{1}∨{3}}^) and the

set {1,3} could have been chosen from either {1,3} or {1,2,3} while the sets {1} and {3]

could have been chosen only from themselves.  Because this choice lattice is not

distributive and because the feasible set undergoes both expansion and contraction, the

choice set is not a sufficient statistic for the prior choice acts.  This example shows that

not all choice lattices are distributive.  It is known (e.g. Edelman 1986) that every locally

lower distributive lattice that is not distributive has a sublattice isomorphic to the lattice of

Figure 1.

Let C be a locally complete PI choice function on V with respect toV.  C is said to

be rational  if there is a  relation R defined on V such that whenever A∈V then C(A) = {x

: xRa for all a ∈ A}.  In this case we also say the choice function C is or has been

rationalized by R.

Note that nothing is required for sets not in the collection V.  In particular, B⊆ V

then {x: xRb for all b ∈ B} may be empty.  And even if it is not, B need not belong to the

collection V.

Plott (1973) has shown that rationalizability and path independence are

independent of each other.  The first result of this section is that rational locally complete

PI choice functions always yield distributive choice lattices (Theorem 9).  For finite lattices

the converse is true: every finite distributive lattice arises as the choice lattice of rational

PI choice function (Theorem 10).  In other words, rational PI choice functions over finite

domains can be completely characterized as the class of finite distributive lattices.  This

result has also been obtained by Koshevoy (1998).

  First two remarks.  Suppose that C is a choice function rationalized by the relation

R.  The relation R is reflexive (vRv for all v ∈ V) because C({v}) = {v}.  It is also worth

remarking at this point that if C is rational then the relation is determined by the choice

function on the two element subsets.  If C(x,y) = {x,y} then xRy and yRx; if C(x,y) = {x}

then xRy and y¬Rx.  (The symbol y¬Rx means that y is not related to x under R.)

Our first result is of some interest by itself.
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LEMMA 16: Let C be a locally complete  choice function on V with respect toV.  If C is a

choice function rationalized by R then C satisfies Chernoff’s Axiom.

The following theorem is a consequence of this lemma and Theorem 1.

THEOREM 8: (Criterion for a Rational Choice Function to be PI): A locally complete

rational choice function on V with respect toV is path independent if and only if it

satisfies the quotient property.

Lemma 18 is the clue to our proof of distributivity.  It shows that in the choice

lattice of a PI rational function lattice meets and joins are set intersections and unions of

the sets {A^: A ∈V},  the tops of the quotients that map to the range of C.  Its proof

requires the technical result of Lemma 17 given in the Appendix.  Theorems 9 and 10

now follow directly.

LEMMA 18: If C is a locally complete rational PI choice function  on V with respect to V

and A and B  are elements R then (i) (A∨B)^ = A^∪B^ and (ii) (A∧B)^=A^∩B^.

THEOREM 9: The choice lattice of a locally complete rational PI choice function on V with

respect toV is distributive.

THEOREM 10: (Representation of Finite Distributive Lattices as Rational Choice

Functions):  Let D be a finite distributive lattice.  There is a relation R and a PI

choice function C rationalized by R such that its choice lattice  is D.

Proof:  See Johnson and Dean (1996) or Koshevoy (1998)

These theorems show that the lattices of Figures 2,4,5,6 and 7 are choice

lattices of rational PI choice functions.  The preponderance of these functions among the

PI functions on {1,2,3} is a consequence of the smallness of three, the number of

elements in V.  If V has four elements, there are, up to isomorphism, 35 choice lattices

16 of which represent rational choice functions.7  In general there are far more PI choice

functions that cannot be rationalized than there are rational choice functions.

7  From Theorem 10 the number of non isomorphic rational path independent choice functions is the
number of distributive lattices with n join irreducibles.  In turn this is the number of distinct partially
ordered sets of n elements.  (See for example Birkhoff (1973)).  Asymptotic bounds for the number of
these sets are given in Kleitman and Rothschild (1970, 1975).
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§7.  CHOICE LATTICES FOR WARP AND SAP CHOICE FUNCTIONS.

In this section we investigate the choice lattices of choice functions satisfying

WARP and SAP.

Let C be a locally complete PI choice function on V with respect toV.  C is said to

satisfy the Weak Axiom of Revealed Preference (WARP) (Arrow, 1959) whenever the

following condition holds.

For all A, B ∈V if A⊆ B then C(A) = C(B)∩A or C(B)∩A = ∅.

C is said to satisfy the Strong Axiom of Preference (SAP) if C satisfies WARP and in

addition if, for all pairs x,y ∈ V,  C({x,y}) = {x} or {y}.

Plott (1973) has shown  that WARP implies PI but not conversely.

 Theorems 11 and 12 show that the choice lattice of  WARP function is a chain

of sublattices which are either Boolean algebras or a single element while the choice

lattice of a SAP function is a chain.  For infinite sets these theorems offer strong

necessary conditions on the lattice.  For finite sets V, these conditions are also

sufficient (Theorem 11(v) and Theorem 12(ii)).

Together with Theorems 9 and 10, these theorems show that the lattices of

Figures 2, 5, 6 and 7 are WARP choice functions.  The lattice of Figure 7 is SAP.

Examples 8, 10 and 11 are easily verified to be SAP functions.

We begin with two lemmas which show the inherent structure of the choice

lattice of a WARP choice function.  Lemma 19 is not new but we indicate the short proof

here for its applicability to sets V which are infinite and for completeness.  From this

lemma and Theorem 6 it follows that the choice lattice for a WARP choice function is

distributive.  Lemma 20 contains many of the technical details necessary for the proof of

Theorems 9 and 10.

LEMMA 19: (A WARP Induced Equivalence Relation): Let C be a locally complete PI

choice function on V with respect toV satisfying WARP.

(i) The relation (~) on V defined by

a~b if and only if C({a,b}) = {a,b}

is an equivalence relation on V.  We let [a] denote the equivalence class

to which an element a ∈ V belongs.

(ii) If a relation R is defined on V by xRy if and only if x~y or x > y in the

choice lattice then R is complete, reflexive and transitive.  The choice

function is rationalized by R.

LEMMA 20: Let C be a locally complete PI choice function on V with respect toV

satisfying WARP.
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(i) The set of equivalence classes {[a]: a∈ V} form a chain in the choice

lattice with [a]>[b] if a > b.  (We prove the ordering is independent of the

representatives chosen from the equivalence classes.)  Let [[a]] denote

the sublattice of the choice lattice generated by [a].  The ordering of the

equivalence classes extends to an ordering of the sublattices [[a]] with a

∈ V.

(ii) If [a] contains two or more elements then either [a] is the minimal

equivalence class in the chain or there is an equivalence class [b] such

that [a] covers [b] in the chain of equivalence classes.  In the first case,

a∧a’ = ∅, in the second a∧a’ =[b], for any two elements a, a’ in [a].  Thus

∅ or [b] is the bottom element of the sublattice [[a]] and, in the latter case,

[b]  is the top element of [[b]].

(iii) If [a] consists of the single element a then there may not be an

equivalence class covered by [a] in the chain of equivalence classes.

THEOREM 11: (Lattice of WARP Choice Functions): Let C be a locally complete PI choice

function on V with respect toV satisfying  WARP.

(i) The choice lattice for C is composed of a single chain of distributive

sublattices [[a]] generated by the equivalence classes [a], a ∈ V.

(ii) If [a] ∈V and contains at least two elements then [[a]] is isomorphic to

the Boolean algebra 2[a].

(iii) If [a] = {a} then there may or may not be an equivalence class covered by

[a].

(iv) If V is finite then the choice lattice is a chain of Boolean algebras.

(v) Conversely, any finite lattice which is composed of a chain of Boolean

algebras or single elements is the choice lattice of a choice function

defined on a finite set and satisfying WARP.

If the choice function satisfies SAP then Theorem 12 follows immediately.  As an

example see Figures 15a and 15b in the Appendix.

THEOREM 12: (Lattice of a SAP choice function):

(i) The choice lattice of a locally complete PI choice function on V with respect toV

satisfying SAP is a chain.

(ii) Any finite chain is the choice lattice of a choice function that satisfies SAP.
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EXAMPLE  15:  Let V be the set of positive integers.  Let V consist of all the finite subsets

of V.  Define C(A) = A if A ∈V.  There is only one equivalence class, V.  The  range of

C consists of the sets in V and so for A∈V, arc(A) = A.  It is easy to verify that

properties (a) – (d) are satisfied by V and that C satisfies WARP.  The choice lattice

has no top element and is ordered by set inclusion.  Of course this is not a Boolean

algebra.

EXAMPLE 16:  Let V be the set of positive integers.  Let E denote the set of even

numbers.  Let A∈V if A contains at most  a finite set of odd numbers.  Now define

C(A) = A if A ⊆ E, otherwise

C(A) = the set of odd integers in A.

Note that no infinite set of odd numbers is in V.  Note that A is an element of the range

of C if A ⊆ E or if A is a finite set of odd integers.

Now it must be verified that properties (a) – (d) hold with respect to C.

Properties (a) and (b) are straightforward to verify.  Properties (c) and (d) follow readily

once arc(C(A)) for A ∈V has been determined.  Suppose first that A⊆E.  In this case

C(A) = A and so arc(A) = A.  In the second case, when C(A) is the (finite) set of odd

integers in A, arc(C(A)) = {C(A)∪B: B ⊆ E }.  Thus ⋃arc(A) = A in the first case and

C(A)∪E in the second.  Thus Property (c) holds.  Property (d)  now follows readily.

There are just two equivalence classes; the set of odd numbers which are

above the set of even numbers.  The top sublattice is isomorphic to that of Example 13,

the bottom sublattice, generated by the even numbers is the Boolean algebra of all

subsets of even numbers.

§8.  SUMMARY AND CONCLUSIONS.

The main results are summarized in Figure 14.  In a sense, this diagram confirms

Plott’s original conjecture that the associative property of the semigroup he identified

would be useful in extending the path independence concept to situations without the

finiteness he assumed.  For finite domains, we have complete characterization as shown

by the double arrows in Figure 14.  The results of Koshavoy (1998) are summarized by

the two double-headed arrows on the lower left.

The structures identified in Figure 14 form two nested sets.  For finite domains,

beginning with the class of chains, each system class is contained in the class

immediately below it.  More over, as the class of mathematical system is expanded, the

system’s powers increase.  One difference in power can be seen by comparing rational

PI choice functions and non-rational PI choice.  In the first case, the fact that the
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associated lattice is distributive means that final choices must be invariant with respect to

a sequence of expansions and contractions of the feasible sets.  The examples provided

on three elements demonstrate that for non-rational PI choice functions, this restriction is

relaxed.  A similar nesting of mathematical systems exists for the systems identified for

infinite domains.

SAP

WARP

Rational PI

Chain

Chain of
Boolean algebras

Distributive
Lattices

Chain

Chain of
Distributive Lattices

Distributive
Lattices

Finite Domains Infinite Domains

PIChoice
Lattices

Choice
Lattices

Theorems 3 & 4 Theorem 3

Theorems 9 & 10 Theorem 9

Theorem 11(iv) & (v) Theorem 11(i)

Theorem 12(i)Theorem 12(i) &(ii)

FIGURE 14:  Summary of results.

Our algorithm for constructing choice lattices (and the associated choice function)

also demonstrates a complexity difference.  Rational choice functions can be easily

generated from a binary relation.  Non-rational PI choice functions can not; for them, a

different, arguably more “complicated” process—our algorithm—is required.

We believe the extensions begun in this paper to infinite sets should be continued.

For example, there are modifications of  the contraction and expansion process that are

valid for locally complete path independent choice functions with respect to its domain V

even if V is infinite.  More generally it has been suggested by one referee that our

restrictions of the domain of the choice function over infinite sets might be a way to

extend the theory of finite locally lower distributive lattices to infinite ones.
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APPENDIX:  PROOFS OF LEMMAS AND THEOREMS

1 (123/1)

3 (23/3)

∅

FIGURE  15b2

∅

123

12 13 23

1 2 3

FIGURE  15a

Figure 15a:  Boolean algebra on V={1,2,3}.  Figure 15b:  Choice lattice for the choice
function.  Quotients in the domain are shaded consistent with the elements in the range.

Proof of Lemma 4.

A^∈V by property (c).  It suffices to show that

(*) A^⊇A⊇C(A^)

for then, by Lemma 2,  C(A^)= C(A) = A and so if X belongs toV and to A^/A = A^/C(A^)

then, by Lemma 2 again, C(X) = C(A^)= A.  Conversely, if X∈V and C(X) = A then X⊇C(X)

⊇A⊇C(A) while X∈arc(A) and so X⊆⋃arc(A) = A^.  Thus arc(A) = {X ∈V: A^⊇X⊇A}.

Now to prove (*).  First, A^⊇A because  A∈arc(A)⊆ ⋃arc(A) = A^.

Second, to prove that A ⊇ C(A^) we argue as follows.  If X∈arc(A) then C(X) = A and

so A^⊇X.  Now, using  Chernoff’s Axiom, A = C(X)⊇C(A^)∩X.  So for all X∈arc(A), A ⊇

C(A^)∩X.

Hence, taking set unions over arc(A) and using the distributivity of set intersection over set

union, A ⊇ ⋃{C(A^)∩X: X∈arc(A)} = C(A^)∩⋃{X∈arc(A)} = C(A^)∩A^ = C(A^).î
Proof of Theorem 1.

We need only establish here the sufficiency of Chernoff’s Axiom and the Quotient

Property for PI.  Let C be a choice function satisfying these two properties.  We are to prove

that for all A,B ∈V,  C(A∪B) = C(C(A)∪C(B)).  For ease of computation let D = A∪B.  D∈V

by condition (b).  Since D⊃A it follows from Chernoff’s Axiom that C(A)⊇ C(D)∩A and similarly

C(B)⊇ C(D)∩B.  Thus C(A)∪C(B)⊇ [C(D)∩A]∪[C(D)∩B] = C(D)∩[A∪B] = C(D).  Thus D= A∪B

⊇ C(A)∪C(B) ⊇ C(D).  It follows from property (b) and the Quotient Property that C(D) =

C(C(A)∪C(B)).î
Proof of Lemma 5.

For brevity, let A = ⋃K.  For all K∈K, A⊇ K and so by Chernoff’s Axiom, C(K) ⊇ C(A)

∩ K for all K∈K.  Now, taking set union over K,
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⋃{C(K): K∈K} ⊇ ⋃{C(A)∩K: K∈K} = C(A) ∩ ⋃{K: K∈K} = C(A)∩A =C(A);

the first equality holds because of the infinite distributivity of set intersection over unrestricted

set union.  On the other hand, A = ⋃{K: K∈K} ⊇ ⋃{C(K): K∈K} and thus

A^ ⊇ A⊇⋃{C(K): K∈K} ⊇C(A).  From the Quotient Property, C( ⋃{C(K): K∈K}) = C(A).î
LEMMA 8: Let C be a locally complete PI choice function on V with respect toV.

(i) The semigroup <R, •> whose binary operation is the Plott product A• B =

C(C(A) ∪ C(B)) is a partially ordered set under the definition:

A ≤ B if and only if B = A• B.

(ii) In this partially ordered set A•B is the least upper bound for A and B and is

denoted A∨B.  In this case, since C(A) = A and C(B) =B

A∨B = C(C(A)∪C(B)) = C(A∪B).

(iii) If V ∈V then   C(V)≥ A for all A ∈R; that is, C(V) is the top element.

(iv) The bottom element is the empty set ∅.

Proof. Conclusions (i) and (ii) follow from the general result cited in Clifford and Preston

(1961).  Now suppose that V∈V.  If A ∈R then, since A ⊆ V,

A•C(V) = C(A ∪ C(V) ) = C(C(A)∪C(V)) = C(A∪V) = C(V).

Thus C(V) is the top element of the partially ordered set.

The empty set ∅ acts as an identity element for  if A ∈R,  ∅• A = C(∅ ∪ A) =  C(A) = A

and hence ∅ is the bottom element under the partial ordering.î

LEMMA 9: (Identification of meets in the lattice): Let C be a locally complete PI choice function

on V with respect toV.  Let A and B belong  to R.  Under the partial ordering of R

defined in Lemma 8, the greatest lower bound of A and B, is

glb( A, B) = C(A^ ∩ B^),

consequently we may define the meet operation:

A∧B = C(A^∩B^).

Proof . Using property (c) and then (b) we know that A^∩B^ ∈V.  We prove first that

C(A^∩B^) is a lower bound for A and B.  Begin by noting that A^ ⊇ A^∩B^  and A^ ⊇ A so

that  A^ ⊇(A^∩B^)∪ A⊇C(A^∩B^) ∪A⊇A.  From the Quotient Property,  C[C(A^∩B^)∪A] = A.

Now compute:  C(A^∩B^)•A = C[C(C(A^∩B^)∪C(A))]  = C[C(A^∩B^)∪A] = A, and so

C(A^∩B^) ≤A.  Similarly C(A^∩B^) ≤ B, and so C(A^∩B^) is a lower bound for A and B.

Now suppose that  an element W  ∈R is a lower bound for A and B in the semilattice.

From W ≤ A we have. A = W•A = C( W∪A)  and hence that A^  ⊇ W∪A ⊇ A; in particular A^

⊃W.

27



Similarly, from W ≤ B, we have B^ ⊇ W .  Thus if W is a lower bound for A and B, it

follows that  A^∩B^  ⊇ W.  Now since A^∩B^  ⊇ C(A^∩B^) it follows that

A^∩B^ ⊇ W∪C(A^∩B^) ⊇ C(A^∩B^)

and so W∪C(A^∩B^) belongs to arc(C(A^∩B^) ).  That means

C(W∪C(A^∩B^) ) = C(A^∩B^) or W•C(A^∩B^) = C(A^∩B^)

and hence for any lower bound W for A and B, W ≤ C(A^∩B^).

Thus C(A^∩B^) is the greatest lower bound of the pair (A, B).î
Proof of Theorem 2.

From Lemma 9 it follows that R, partially ordered by the definitions of Lemma 8, forms

a lattice and so Theorem 2 is established.î
Proof of Lemma 10.

 Suppose that K is any collection of elements in R such that ⋃K ∈ V.  Let W =

C(⋃K).  We claim that W is the least upper bound in the choice lattice of the set K.  First  to

show that W is an upper bound for K we must show W•H = W for all H∈K.  Compute:

W•H = C(W∪H) = C(C(⋃K)∪C(H)) = C((⋃K) ∪ H) = C(⋃K) = W,

The penultimate equality holds in view of Lemma 5, and so  W ≥ H for all H ∈K.

Second we must show that W is the least upper bound of K.  Suppose that  X is an

upper bound; i.e. X ≥ K for all K∈K.  This means that X = C(X) = C(X∪K) for all K∈K and

hence X^ ⊇ X∪K  for all K∈K therefore, by taking set union over all K∈K ,

X^ ⊇ X∪⋃K ⊇ X = C(X)  and so C (X∪⋃K) = C(X); hence X > ⋃K = W.

Thus W is the least upper bound for K in the choice lattice.î
 Proof of Corollary 2.

Lemma 10 shows that every subset of elements in the choice lattice has a least

upper bound.  Since in addition the lattice has a bottom element, ∅, it follows that the lattice

is complete; in particular every set of elements in the choice lattice has a greatest lower

bound.  See Birkhoff (1973) for an exposition of this result.î
Proof of Lemma 11.

First, suppose  A≥B.  Then C(A∪B) = A.  Now compute, using PI,

C(A^∪B^) = C(C(A^)∪C(B^)) = C(A∪B)

Thus A^∪B^ ∈ arc A and so A^⊇ A^∪B^⊇ B^.

Conversely, suppose that A and B are such that A^⊇B^.  Then A^⊇ B^∪A ⊇ A so

that C(B^∪A) = A.  On the other hand, using PI,

C(B^∪A) = C(C(B^)∪C(A)) = C(B∪A) = A•B and so A = A•B, or A ≥ B.î
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Proof of Lemma 12.

First we show that {x} is join irreducible.  If {x} = A∨B in L, then {x} = C(A∪B) and so

x≥A∪B.  Without loss of generality, suppose that x≥A.  Since {x}≥A in L,  it follows that {x} =

{x}∨A = C({x}∨A}, but since x∈A, C({x}∪A) = C(A)=A.  Hence {x} = A.

On the other hand suppose A ∈R,  A is not the empty set and is not a singleton,

say, A ={a}∪B where a∉B≠∅.  Since B⊂A and C(A) = A it follows that C(B) = B.  Therefore A

= {a}∨B in L where neither {a} nor B is equal to A.  So A is not join irreducible in L.î
Proof of Theorem 3.

Let C be a locally complete PI choice function with respect to V and let R be its

range.  Let A ∈R so that A = C(A).  From Corollary 1 we know that  A = ∨{{x}: x ∈ A}; i.e. that

A is the least upper bound of the singleton sets {x} for x∈A.  This shows that every element

of the choice lattice is the join of join irreducibles.

Next we show that this representation of A as the join of irreducibles is minimal in the

sense that A is not the join of a proper subset of A.  To prove this, suppose that  A = ∨T

where T⊆A.  By property (d), T∈V.  From Lemma 10, ∨T = C{{t}: t ∈T}  and so

C(A) =A = C{{t} : t∈T} ⊆ T.

Thus A = T.

Finally we must show this representation is unique in the following sense:  Suppose

there are sets S and T of join irreducibles such that A =∨S = ∨T.  If these representations

of A as the join of join irreducibles are minimal, then S = T.  It suffices to prove that A = C(A) =

S = T.  In any event, since the members of S are singleton sets, we know from Lemma 10

that the least upper bound of S is C(⋃S) = C(S).  On the other hand, by assumption A is the

least upper bound of S.  Hence A = C( S).  Because the join ∨S is minimal no subset of S

can be deleted from this join and so S =C( S) = A.  Similarly T = A and so S = T.î
Proof of Lemma 13 .

If A ≥ {x} then A = A•{x} and so A = C(A∪{x}) and so A∪{x} ∈A^/A.  Therefore A^⊇{x}

if A >{x}.  Hence A^⊇ {x ∈ V:  A≥{x}}.  Conversely suppose that  y ∈A^.  Therefore A^⊇

A∪{y}⊇ A and so A•{y} = C(A∪{y}) = A; i.e. A > {y} and so A^ ⊆ {x ∈ V:  A≥{x}} .î

LEMMA 14: (Coverings, a necessary condition): Let C be a locally complete PI choice function

on V with respect toV. Let  A and B  belong R.

(i) If x ∉ B^ then C(B∪{x}) ≥ B and C(B∪{x})≠ B in the choice lattice.

(ii) If A ≥ B, A≠B then there exists x∈A and x∉ B^, and so

A ≥ C(B∪{x}) ≥ B and C(B∪{x}) ≠ B.

29



(iii) If A covers B then there exists one and only one x ∈ A, x∉B^ such that

A =C(B∪{x}).

Proof of Lemma 14.

Proof of (i).  The calculation

B•C(B∪{x}) = C(C(B)∪C(B∪{x})) = C(B∪B∪{x}) = C(B∪{x})

shows that B≤ C(B∪{x}).  If B = C(B∪{x}) then B∪{x}∈arcB and so B∪{x}⊂B^; in particular

x∈B^ contrary to assumption.

Proof of (ii).  To guarantee the existence of x ∈A and x∉B^, suppose to the contrary that

A⊂B^.  From Lemma 11, since B≤A, we know that B^⊆ A^ and hence C(B^) = A; but C(B^) =

B and B≠A by assumption.  Thus an x exists.  The rest of (ii) follows from (i)

Proof of (iii).  We know from (ii) that there is an x ∈ A such that C(B∪ {x}) ≥ B and unequal to

B.  Calculate

A• C(B∪{x}) = C(A∪ C(B∪{x})) = C(A∪ B∪{x}) = C(A∪B) = A•B = A

to show that A≥ C(B∪{x}).  Since A covers B, A = C(B∪{x}).

To prove the uniqueness of this element, suppose that y ∈ A^, y∉B^.  From (i) we

know C(B∪{y})>B and is unequal to B.  The calculation

A• C(B∪{y}) = C(A∪C(B∪{y})) = C(C(A^)∪C(B∪{y})) = C(A^∪B∪{y}) =C(A^∪B)

= C(C(A^)∪B) = C(A∪B) = A∨B = A

shows that A≥C(B∪{y}).  Since A covers B, A = C(B∪{y}).  Hence both B∪{x} and B∪{y} are in

arcA and therefore so is their set intersection:

(B∪{x})∩(B∪{y}) = B∪ ({x}∩{y}) = B

if x ≠ y.  Thus if x ≠ y, B∈ arc A, or C(B) = A;  a contradiction since C(B) = B.  Thus x = y.î

LEMMA 15.  Let L be the choice lattice of a PI choice function C defined on a finite set V.

Suppose that for elements A and B in R, A covers B and that B is meet irreducible in L.

Then A = {B1, x} where B1 is a proper subset of B if and only if B covers a meet irreducible

element.

Proof.  From Lemma 14 we know that A = C(B∪{x}) where x ∉ B.

Suppose first that A = B∪{x}.  We are to show that B covers no meet irreducible

element.  Suppose then that B covers D.  From Lemma 14, B=C(D∪{y}) for some y ∈ B-D.

We are to show that D is meet reducible.  We claim that D = B∧(D∨{x}).  Note that

D≠B and D≠ D∪{x} else B^⊇D^⊇{x} contrary to the choice of x.  In any event, B ≥ B∧(D∨{x})

≥ D and because B covers D one of these containments is an equality.  If B = B∧(D∨{x})

then
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D∨{x} ≥ B  and  D∨{x} = B∨D∨{x} = B∨{x}= B∪{x}.   Since y∈B, y∈B∪{x} while y ∉ D∪{x}; a

contradiction.  Thus D=B∧(D∨{x}) is meet reducible.

Suppose second that A = {B1,x} where B1 is a proper subset of B.  Let y ∈ B-B1 and

let D = B-{y}.  Because of Lemma 6 (Hereditary Identity), C(D) = D and by its construction B

covers D.  We will now show that D is meet irreducible.

If to the contrary then D must be covered by an element E not contained in A and D

= B∧E.  From Lemma 14 we know that E = C(D∪{z}) for some element z.  Note that

 A ≥A∧(B∨E)≥B and since A covers B it follows that one of these containments is an

equality.  We examine both possibilities.

Suppose that B = A∧(B∨E).  Since B is meet irreducible this equality implies that B =

B∨E or that B ≥ E contrary to the choice of E.  But then B ≥E≥D and since B covers D one

of these containments must be an equality which is impossible.

Suppose that A = A∧(B∨E).  This means that  B∨E ≥ A and hence

B∨E≥A∨E≥B∨E , so that  A∨E= B∨E or that

C(B1,{x},D,{z})= C(B,{z}) .

However, y is not a member of (B1,{x},D,{z}) and hence y∉ C(B1,{x},D,{z}) and so y ∉ C(B,{z}).

Therefore C(B,{z}) = C((B-{y}),{z}) =  C(D,{z}) = E.  But then A∨E = E and therefore E≥A≥B,

contrary to the assumption that E not contain B. î
Lemma 15 permits us to make a connection with the work of Bordalo and Monjardet

(1996) and so prove Theorem 5.

Proof of Theorem 5.8  In their Theorem 10d, Bordalo and Monjardet (1996) give three

conditions, any one of which is sufficient while one must be necessary for B to be deletable.

The sufficiency of two of these are applicable here: (i) B is both meet and join irreducible, (ii)

B is meet irreducible but not join irreducible, A, the unique element covering B is not join

irreducible and  every element covered by B is meet reducible.

If B is both meet and join irreducible then condition (i) applies and B can be deleted.

Lemma 14 shows that A =C(B∪ {x}) which is equal to B∪{x} in this case since B is a singleton.

If B is not join irreducible then Lemma 15 shows that under the hypotheses of

Theorem 5 condition (ii)  applies.  Thus B can be deleted.  The definition of the new choice

function C* follows easily and we omit the details.î

Proof of Theorem 6.   Part (i).  An inspection of the conditions shows that *C is clearly a

choice function on V.  Second, the inverse sets of *C are those of C except for the inverse

8  For our original proof of this result see Johnson and Dean (1996).
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sets of A and B.  Because BC is the relative complement of B∪{x} = A in B^/B, every set in

B^/B belongs either to B^/A or to BC/B, but not to both.  Thus the *C inverse set of A is  B^/A

since *C(X) = A if and only if X ∈ B^/A and the *C inverse set of B is BC/B.  From these

arguments we have that *C satisfies the quotient property .

To complete the proof that *C is path independent we verify Chernoff’s Axiom.

Suppose D⊇ E.  We must prove *C(E) ⊇ *C(D)∩E.  We know C(E) ⊇ C(D)∩E.  We

consider four cases based on the relationship of D and E to the quotient B^/A.

Case 1.  Neither D nor E belong to B^/A.  Then *C = C for D and E.  The implication is

inherited from the condition on C.

Case 2.  Both D and E belong to B^/A.  Then *C(E) = *C(D) = A and so the implication

holds.

Case 3.  D∈ B^/A  and E∈B^/A.

Thus *C(D) = C(D) and *C(E) = A ⊇ B =C(E) so that the condition to be verified becomes

A⊇C(D)∩E.  Because C is path independent, C(E) ⊇ C(D)∩E and so B ⊇ C(D)∩E.  Since

A⊇B the condition to be verified holds.

Case 4.  D⊇E , D ∈ B^/A  and E ∉B^/A.

In this case the condition to be verified becomes  C(E) ⊇ A∩E.

We know from the choice function C that C(E) ⊇ C(D)∩E = B∩E.  Now compute

A∩E = (B∪{x})∩E = (B∩E)∪({x}∩E) = (B∩E)∪{x}

since x ∈ E by hypothesis.  Since C(E) ⊇ B∩E it suffices to show that A∩E⊇ {x}∩E  and for

this it suffices to show C(E) ⊇{x}∩E = {x}.  But by the condition on E, x ∈ C(E). The proof of

Part (i) is complete.

The proofs of Parts (ii) and (iii) are routine and the details are omitted.

Part (iv).  We start from a choice function C and its lattice L.  In L we have a covering,

A=B∪{x}≥B and B is meet irreducible. The quotient for A is A^/A and for B it is B^/B.  This

covering is collapsed under C* to form the lattice L*.  The quotient under C* is A^/B.   It must

be shown that the conditions  (1) and (2) of Theorem 6 are met for C*.  We know  x ∉B.  So

suppose that E is a set such that x∈E, A^ ⊇ E but EÛB∪{x}.  We must show that x ∈ C*(E).

Now C*(E) = C(E).  In L, C(E)≥{x} since C(E)∨{x} = C(E∪{x}) = C(E). Consider B∨C(E) in L.

Since A^⊇B∪E it follows that A ≥ B∨C(E) ≥ B.  But A covers B so one of these must be an

equality.   Suppose that A = B∨C(E). We know x∈A, x∉B so it must follow that x∈C(E).

Suppose that B∨C(E) = B so that B≥C(E) but C(E)≥{x} and hence B∨{x} = B contrary to the

assumption that B∨{x} = A.  Hence we can perform the expansion on C*.

Now the rest of the details are routine and are omitted.î
Now we state a technical lemma needed for the proof of Lemma 18.
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LEMMA 17:  Let C be a PI choice function rationalized by R on the universal set V and domain
V.

If a∈A ∈V then either aRA or there exists x∈C(A) such that a¬Rx.

We often use this in the form:  If A = C(A) and a∈A^ then either a∈A or a¬Rx for some x∈A.

Proof of Lemma 18.

In view of Corollary 3 we need only prove (i).  Since A∨B = C(A∪B) = C(C(A^)∪C(B^))

= C(A^∪B^), the last equality holding by PI, it follows that C(A^∪B^) ∈arc(A∨B). and so

(A∨B)^⊇A^∪B^ .  To prove the reverse containment,  suppose that x∈ (A∨B)^ =(C(A∪B))^.

By Lemma 17 either x∈C(A∪B) or there exists d∈C(A∪B)  such that x¬Rd.  In the former

case, x∈(A^∪B^).  In the latter, since C(A∪B)⊆A∪B we may suppose without loss of

generality, that d∈A.  Then C(A∪{x}) = A since x¬Rd.  But then the quotient property implies

A^⊇(A∪{x})⊇A, so that x∈A^⊆A^∪B^.

Proof of Theorem 9.

        We continue the notation as before.  The universal set is V, if C(A) = A  then arc A = A^/A.

        We prove that the mapping Φ from the choice lattice L  into 2V defined by  Φ(A) = A^ is

an injection.  This means that L is isomorphic to a sublattice of the Boolean algebra, 2V,

which is, among other things, distributive.  Now the mapping Φ is one to one for if A^ = B^

then A =C(A^) = C(B^) = B. Lemma 18 shows that Φ preserves meets and joins.î
Proof of Lemma 19.

It is easy to see that (~) is reflexive and symmetric.  To prove transitivity  suppose

that for elements a,b and c in V, a~b and b~c.  We are to prove that a~c.  We suppose that

b≠a and b≠c; otherwise transitivity is trivial.  By hypothesis we know that C({a,b}) = {a,b} and

C({b,c}) = {b,c}.  Next we gain information on C({a,b,c}).  Using the hypothesis and WARP,

since {a,b}⊆{a,b,c} it follows that  {a,b} = C({a,b} = C{a,b,c}∩{a,b} unless the later intersection

is empty.  But if C({a,b,c}∩{a,b} = ∅ then C({a,b,c} = {c}.  But then, using WARP again

together with the hypothesis,

{b,c} = C({b,.c}) = C({a,b,c})∩{b,c} = {c};

a contradiction.  Thus it follows that C({a,b,c}) ⊇{a,b}.  Interchanging a and c in the above

argument shows that C({a,b,c} ⊇{b,c} and hence C({a,b,c}) = {a,b,c}.  But now using WARP

again  C({a,c}) = C({a,b,c}∩{a,c} = {a,c}  and so a~c; completing the proof of transitivity.

Finally it is routine to prove that R has its requisite properties.  We omit the details.î
Proof of Lemma 20.

First we show given two distinct classes [a] and [b] then either a > b or b > a and

moreover whichever holds, say a>b, then a’>b’ for all a’ ∈ [a] and all b’ ∈ [b].  To see this,
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since a is not equivalent to b, C({a,b}) = {a} or C({a,b}) = {b} .  Suppose the first alternative

holds, then {a}∨{b} = C({a}∪{b}) = {a} and so a > b.  (We continue our “abuse of notation” to

identify {a} without the braces when we speak of lattice elements.)  We continue with the

proof assuming that a> b without loss of generality.

Now suppose a~a’.  We compute

C({a’, a, b}) = C({a’}∪{a,b}) = C({a’}∪C({a,b}) = C({a’}∪{a}) = {a’,a}.

Now using WARP,

C({a’,b}) = C({a’,a,b})∩{a’,b} = {a’}

 and thus a’ > b.  By interchanging the roles of a and b we find C({a,b’}) = {a} and so a > b’ if

b’ ∈ [b].  Next we compute using path independence that

 C({a’,b’,a}) =C( C{a’} ∪C{b’,a}) = C({a’, a} = {a’,a}.

Finally then, using WARP,

C(a’,b’) = C({a’, b’, a})∩{a’,b’} = {a’} and so a’>b’ in the lattice.

The important fact about the choice lattice for C is that the set of its join irreducibles

(which coincide with the elements of V) break into disjoint equivalence classes and that in

the choice lattice these equivalence classes form a chain under the ordering of the lattice.

Let [[a]] denote the sublattice generated by the join irreducibles in the equivalence

class [a].  Then the choice lattice is the set union of these sublattices [[a]] for a ∈ V.

Moreover if a > b and [a]≠[b] , then H > K if H∈ [[a]] and K ∈ [[b]].  This is so because each

element of the choice lattice is the join of join irreducibles and the comparability of elements

H and K is inherited  from the comparability of the join irreducibles in their representations

(Theorem 4).  Thus these sublattices [[a]] form a chain and the choice lattice is the set union

of these sublattices.

Now we consider the case that [a] contains two or more elements.  It is useful to

determine for distinct elements a and a’, both in [a], the lattice meet a∧a’.  We prove that

a∧a’ = C({{t}: a>t, a≠t}).

(In this proof we will write a>t if a≥t and a≠ t in the choice lattice to simplify notation.)

From the characterization of meets in the choice lattice given by Lemma 9 we must

first determine a^ and a’^.  In any event C({a,r}) ={a} if a > r so that arc(a) contains

⋃{{a, r} : a >r} = {a}∪⋃{r : a >r}  = {a}∪⋃{r : a’ > r} .

the last equality holding because the set of elements below a in the choice lattice is the

same as the set below a’ if and only if  a~a’.  Conversely, suppose K ∈ arc(a) and that k ∈

K, k≠{a}.  Then, using WARP, C({a,k}) = C(K}∩{a,k}) = {a} and so a > k.  Thus K ⊆ {a}∪ ⋃{r:

a > r}.  This means that  arc(a) = {a}∪⋃{r : a > r}.  By property (c),  arc(a) ∈ V since in this

case ⋃arc(a) = arc (a).  It follows immediately that a^ = arc(a).  Similarly a’^= arc(a’) and so
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a∧a’ = C(a^∩a’^) =C( ⋃{r : a > r})

If the set {r: a>r} is empty, then [a] is the minimal equivalence class in the chain of

equivalence classes.  In this case a∧a’ = ∅.  In either case a∧a’ is in the distributive

sublattice [[a]] and is the bottom element of this lattice because all elements of [a] lie above

it.

Next we argue that if a∧a’≠∅, this bottom element is precisely one equivalence

class [b].  Let b be any element in C(a^∩a’^).  By Theorem 4, a∧a’ has a unique

representation as the irredundant join of join irreducibles.  These irreducibles are just the

elements in C(a^∩a’^).  In this case we  know that these join irreducibles come from

equivalence classes which form a chain.  Thus if b>r, the element r cannot occur in the

irredundant representation for a∩a’ and hence is not in C(a^∩a’^).  So the elements in

C(a^∩a’^) must belong to [b].

Conversely we show that any element in [b] must belong to C(a^∩a’^).  Suppose b’

∈ [b].  Then {b,b’} ⊆ a^∩a’^ and so we may calculate, using WARP

{b,b’} = C({b,b’}) = C(a^∩a’^)∩{b,b’}

since the latter set intersection contains b and so cannot be empty.  Thus b’ ∈ C(a^∩a’) and

so C(a^∩a’^) = [b].

Again from the minimality of the representation it follows that [b] must be the maximal

equivalence class of those classes below [a] in the chain of classes.  Thus [a] covers [b] in

that chain.  We have immediately that [b] is the top element of the sublattice [[b]] generated

by [b].

For the third part of Lemma 20 we refer to Example 10 to show what may occur

when [a] is a single element.  It is easy to verify that the choice function of this example

satisfies WARP and SAP yet the top element {1} = [1] covers no equivalence class.î
Proof of Theorem 11.

Lemma 19 and Theorem 9 show that the choice lattice for C is distributive.  The

singletons {a} for a ∈ V constitute the join irreducibles (Lemma 12).  The equivalence

relation of Lemma 19 organizes them into equivalence classes [a].  Lemma 20 shows that

the equivalence classes [a], a ∈V form a chain and this ordering extends to the sublattices

[[a]], a∈V generated by the equivalence classes.  Because each element in the choice

lattice has a representation as the join of a minimal set of join irreducibles, each element of

the lattice belongs to one of these sublattices.  Hence the lattice consists of this chain of

sublattices.  These sublattices are of course distributive.

The top element, if it exists, of the sublattice [[a]] is C([a]).  It may not exist since

there is no condition forcing the union of an infinite number of elements to belong to V.
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However the bottom element of [[a]] always exists.  Lemma 20 shows that if [a] consists of at

least two elements this bottom element is an equivalence class [b].  It follows that in the

chain of equivalence classes, [a] covers [b].  If [a] is not a member of V then little more can

be said about [[a]].  If [a] = {a}, then there is no guarantee that [a] covers another

equivalence class.

Suppose then that [a] ∈ V and contains at least two elements.  From the argument

in the proof of Lemma 20  it follows that C([a]) = [a] and is the top element in the sublattice

[[a]].  Applying this inference to [[b]] we see that the top element of [[b]] is [b] so that the

bottom element of [[a]] is the top element of [[b]].

From Property (d) and Lemma 6 it follows that C(E) = E for all subsets E ⊆ [a] and so

in the sublattice [[a]] lattice meets and joins are set intersections and set unions.  From this it

follows that the sublattice is isomorphic to 2[a].

 Conversely, suppose D is a finite lattice which is a chain of Boolean algebras as

defined in the theorem.  It is routine to prove that D is distributive.  By Theorem 10 there is a

PI choice function defined on the set of join irreducibles whose choice lattice is D.  We omit

the details of the proof that in this case the choice function satisfies WARP.î
Proof of Theorem 12.

Choice functions satisfying SAP of course also satisfy WARP and can be

rationalized by the linear order R of Lemma 20 which, in addition to the conditions that R

must satisfy by rationalizing a WARP function, also satisfies the anti-symmetry required by

SAP:

If xRy and yRx then x = y

This means that the equivalence classes of Lemma 19 are singletons.  If V has a finite

number n of elements this lattice is a chain of length n+1.î

36



References

1. Aizerman, M. A. (1985): “New Problems in the General Choice Theory:  Review of a

Research Trend,” Social Choice and Welfare, 2, 235-282.

2. Arrow, K. J. (1959): "Rational Choice Functions and Orderings," Econometrica 26,

121-127.

3. Arrow, K. J. (1963): Social Choice and Individual Values, (2nd ed.) New Haven, Yale

University Press.

4. Birkhoff, G. (1973): Lattice Theory, (3rd ed.) Providence, American Mathematical

Society.

5. Bordalo, Gabriela and Monjardet, Bernard (1996): “Reducible Classes of Finite

Lattices,” Order 13, pp. 379-390

6. Chernoff, H. (1954): Rational Selection of Decision Functions,” Econometrica 22, 422-

443.

7. Clifford, A. H. and G. B. Preston (1961): The Algebraic Theory of Semigroups, Vol. 1,

Providence, American Mathematical Society.

8. Dilworth, R. P. (1940): Lattices with Unique Irreducible Decompositions, Annals of

Mathematics, 41, 771-777.

9. Dilworth, R. P. (1960): Structure and Decomposition Theory of Lattices, Proceedings

of Symposia in Pure Mathematics, 2, 3-16.

10. Edelman, P. (1986): Abstract Convexity and Meet-distributive Lattices, Contemporary

Mathematics, 57, 1986, 127-150.

11. Johnson, M. R. (1990): "Information, Associativity and Choice Requirements,” Journal

of Economic Theory, 52, 440-452.

12. Johnson, M. R. (1994): “Algebraic Complexity of Path independent Choice Functions,”

Mimeo.

13. Johnson, M. R. (1995): "Ideal Structures of Path Independent Choice Functions,"

Journal of Economic Theory 65, 468-504.

14. Johnson, M. R. and Dean, Richard A (1996):  “An Algebraic Characterization of Path

Independent Choice Functions,” Third International Meeting of the Society for Social

Choice and Welfare, Maastricht, The Netherlands.

15. Johnson, M. R. and Dean, Richard A (1998):  “Path Independent Choice Functions

Over Infinite Domains,” Fourth International Meeting of the Society for Social Choice

and Welfare, Vancouver, Canada .

16. Kelly, J. S. (1984): The Sertel and Van Der Belleln problems, Mathematical Social

Sciences, 8, 387-390.

37



17. Kleitman, D. J. and B. L. Rothschild, (1970): “The Number of Finite Topologies,”

Proceedings of the American Mathematical Society 25, 276-282.

18. Kleitman, D. J. and B. L. Rothschild, (1975): “Asymptotic Enumeration of Partial

Orders on a Finite Set,” Trans. Amer. Math. Soc., 205, 205.

19. Koshevoy, Gleb A (1998): Choice Functions and Abstract Convex Geometries,”

International Meeting of the Society for Social Choice and Welfare, Vancouver,

Canada

20. Malishevski, A. V. (1994): “Path Independence in Serial-parallel Data Processing,”

Mathematical Social Sciences 27, 335-367.

21. Monjardet, B. (1990): “The consequences of Dilworth’s work on lattices with unique

irreducible decompositions, In K. P. Bogart, R. Freese and J. Kung (eds.), The

Dilworth Theorems Selected Papers of Robert P. Dilworth, pp.192-201, Birkhäuser,

Boston

22. Plott, C. R. (1973): “Path Independence, Rationality and Social Choice,”

Econometrica 41, 1075-1091.

23. Sen, A. K. (1970): Collective Choice and Social Welfare, San Francisco, Holden-Day.

24. Sertel, M. R. (1988): Characterizing Fidelity for Reflexive Choice Functions,

Mathematical Social Sciences, 15, 93-95.

25. Sertel, M. R. and A. Van Der Bellen (1979): “Synopses in the Theory of Choice,”

Econometrica, 47, 1367-1389.
26. Suzumura, K. (1983): Rational Choice, Collective Decisions and Social Welfare,

Cambridge, Cambridge University Press.

38


