60 research outputs found

    Scaling behavior of low-temperature orthorhombic domains in the prototypical high-temperature superconductor La₁.₈₇₅ Ba₀.₁₂₅ CuO₄

    Get PDF
    Structural symmetry breaking and recovery in condensed-matter systems are closely related to exotic physical properties such as superconductivity (SC), magnetism, spin density waves, and charge density waves (CDWs). The interplay between different order parameters is intricate and often subject to intense debate, as in the case of CDW order and superconductivity. In La₁.₈₇₅ Ba₀.₁₂₅ CuO

    Real Space Imaging of Spin Stripe Domain Fluctuations in a Complex Oxide

    Get PDF
    Understanding the formation and dynamics of charge and spin-ordered states in low-dimensional transition metal oxide materials is crucial to understanding unconventional high-temperature superconductivity. La2−xSrxNiO4þδ (LSNO) has attracted much attention due to its interesting spin dynamics. Recent x-ray photon correlation spectroscopy studies have revealed slow dynamics of the spin order (SO) stripes in LSNO. Here, we applied resonant soft x-ray ptychography to map the spatial distribution of the SO stripe domain inhomogeneity in real space. The reconstructed images show the SO domains are spatially anisotropic, in agreement with previous diffraction studies. For the SO stripe domains, it is found that the correlation lengths along different directions are strongly coupled in space. Surprisingly, fluctuations were observed in the real space amplitude signal, rather than the phase or position. We attribute the observed slow dynamics of the stripe domains in LSNO to thermal fluctuations of the SO domain boundaries

    Structure of charge density waves in La1.875 Ba0.125 CuO4

    Get PDF
    Although charge density wave (CDW) correlations exist in several families of cuprate superconductors, they exhibit substantial variation in CDW wave vector and correlation length, indicating a key role for CDW-lattice interactions. We investigated this interaction in La1.875Ba0.125CuO4 using single-crystal x-ray diffraction to collect a large number of CDW peak intensities and determined the Cu and La/Ba atomic distortions induced by the formation of CDW order. Within the CuO2 planes, the distortions involve a periodic modulation of the Cu-Cu spacing along the direction of the ordering wave vector. The charge ordering within the copper-oxygen layer induces an out-of-plane breathing modulation of the surrounding lanthanum layers, which leads to a related distortion on the adjacent copper-oxygen layer. Our result implies that the CDW-related structural distortions do not remain confined to a single layer but rather propagate an appreciable distance through the crystal. This leads to overlapping structural modulations, in which CuO2 planes exhibit distortions arising from the orthogonal CDWs in adjacent layers as well as distortions from the CDW within the layer itself. We attribute this striking effect to the weak c-axis charge screening in cuprates and suggest this effect could help couple the CDWs between adjacent planes in the crystal

    Anisotropy of antiferromagnetic domains in a spin-orbit Mott insulator

    Get PDF
    The temperature-dependent behavior of magnetic domains plays an essential role in the magnetic properties of materials, leading to widespread applications. However, experimental methods to access the three-dimensional (3D) magnetic domain structures are very limited, especially for antiferromagnets. Over the past decades, the spin-orbit Mott insulator iridate Formula Presented has attracted particular attention because of its interesting magnetic structure and analogy to superconducting cuprates. Here, we apply resonant x-ray magnetic Bragg coherent diffraction imaging to track the real-space 3D evolution of antiferromagnetic ordering inside a Formula Presented single crystal as a function of temperature, finding that the antiferromagnetic domain shows anisotropic changes. The anisotropy of the domain shape reveals the underlying anisotropy of the antiferromagnetic coupling strength within Formula Presented. These results demonstrate the high potential significance of 3D domain imaging in magnetism research

    Stacking disorder in α−RuCl_{3} investigated via x-ray three-dimensional difference pair distribution function analysis

    Get PDF
    The van der Waals layered magnet α − RuCl_{3} offers tantalizing prospects for the realization of Majorana quasiparticles. Efforts to understand this are, however, hampered by inconsistent magnetic and thermal transport properties likely coming from the formation of structural disorder during crystal growth, postgrowth processing, or upon cooling through the first order structural transition. Here, we investigate structural disorder in α − RuCl_{3} using x-ray diffuse scattering and three-dimensional difference pair distribution function analysis. We develop a quantitative model that describes disorder in α − RuCl_{3} in terms of rotational twinning and intermixing of the high- and low-temperature structural layer stacking. This disorder may be important to consider when investigating the detailed magnetic and electronic properties of this widely studied material

    Photoinduced anisotropic lattice dynamic response and domain formation in thermoelectric SnSe

    Get PDF
    Identifying and understanding the mechanisms behind strong phonon–phonon scattering in condensed matter systems is critical to maximizing the efficiency of thermoelectric devices. To date, the leading method to address this has been to meticulously survey the full phonon dispersion of the material in order to isolate modes with anomalously large linewidth and temperature-dependence. Here we combine quantitative MeV ultrafast electron diffraction (UED) analysis with Monte Carlo based dynamic diffraction simulation and first-principles calculations to directly unveil the soft, anharmonic lattice distortions of model thermoelectric material SnSe. A small single-crystal sample is photoexcited with ultrafast optical pulses and the soft, anharmonic lattice distortions are isolated using MeV-UED as those associated with long relaxation time and large displacements. We reveal that these modes have interlayer shear strain character, induced mainly by c-axis atomic displacements, resulting in domain formation in the transient state. These findings provide an innovative approach to identify mechanisms for ultralow and anisotropic thermal conductivity and a promising route to optimizing thermoelectric devices

    Charge Condensation and Lattice Coupling Drives Stripe Formation in Nickelates

    Get PDF
    Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La_{2-x}Sr_{x}NiO_{4+δ}, in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La_{2-x}Sr_{x}NiO_{4+δ}. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates

    Probing electron-phonon interactions away from the Fermi level with resonant inelastic x-ray scattering

    Get PDF
    Interactions between electrons and lattice vibrations are responsible for a wide range of material properties and applications. Recently, there has been considerable interest in the development of resonant inelastic x-ray scattering (RIXS) as a tool for measuring electron-phonon ( e -ph) interactions. Here, we demonstrate the ability of RIXS to probe the interaction between phonons and specific electronic states both near to, and away from, the Fermi level. We perform carbon K -edge RIXS measurements on graphite, tuning the incident x-ray energy to separately probe the interactions of the π ∗ and σ ∗ electronic states. Our high-resolution data reveal detailed structure in the multiphonon RIXS features that directly encodes the momentum dependence of the e -ph interaction strength. We develop a Green’s-function method to model this structure, which naturally accounts for the phonon and interaction-strength dispersions, as well as the mixing of phonon momenta in the intermediate state. This model shows that the differences between the spectra can be fully explained by contrasting trends of the e -ph interaction through the Brillouin zone, being concentrated at the Γ and K points for the π ∗ states while being significant at all momenta for the σ ∗ states. Our results advance the interpretation of phonon excitations in RIXS and extend its applicability as a probe of e -ph interactions to a new range of out-of-equilibrium situations

    Imaging antiferromagnetic antiphase domain boundaries using magnetic Bragg diffraction phase contrast

    Get PDF
    Manipulating magnetic domains is essential for many technological applications. Recent breakthroughs in Antiferromagnetic Spintronics brought up novel concepts for electronic device development. Imaging antiferromagnetic domains is of key importance to this field. Unfortunately, some of the basic domain types, such as antiphase domains, cannot be imaged by conventional techniques. Herein, we present a new domain projection imaging technique based on the localization of domain boundaries by resonant magnetic diffraction of coherent X rays. Contrast arises from reduction of the scattered intensity at the domain boundaries due to destructive interference effects. We demonstrate this approach by imaging antiphase domains in a collinear antiferromagnet Fe2Mo3O8, and observe evidence of domain wall interaction with a structural defect. This technique does not involve any numerical algorithms. It is fast, sensitive, produces large-scale images in a single-exposure measurement, and is applicable to a variety of magnetic domain types
    corecore