30 research outputs found

    Expression of a single major histocompatibility complex locus controls the immune complex locus controls the immune response to poly-L-(tyrosine, glutamic acid)-poly-DL-alanine—poly-L-lysine

    Get PDF
    Genetic control of the immune response linked to the major histocompatibility (H-2) complex in the mouse has been described for synthetic polypeptide antigens and for low doses of native proteins. The phenomenon is well documented(1,2). Extensive screening of intra-H-2 crossover-derived recombinant strains has localized H-2-linked immune response (Ir) genes to the I-immune response region of the H-2 complex (3). For most antigens, Ir genes are autosomal, dominant, and they segregate as single loci. It is not known whether these crossover-defined loci respresent single genes with multiple alleles or clusters of tightly linked genes (4). In 1972, Stimpfling and Durham (5) postulated that two interacting loci within the H-2 complex were required for the response to the alloantigen, H-2.2 (6), and, in 1975, Dorf et. al. (7) observed a responder phenotype in a recombinant derived from two strains which were nonresponders to the synthetic linear terpolymer, L-glutamic acid, L-lysine, L-phenylaline (GLPhe). Analysis of additional recombinants and complementation tests with F(1) hybrids clearly demonstrated that genes in two intra-I-region loci controlled the immune response to GLPhe. Subsequently, requirement for genes mapping in two intra-I-region loci were reported for porcine LDH(B)(8), the alloantigen Thy-1.1 (9), and for the synthetic terpolymers L-glutamic acid, L-lysine, L-tyrosine and L-glutamic acid, L-lysine, L- leucine (6,10). Demonstration that responses to both synthetic polypeptide and native protein antigens can be controlled by genes in two distinct I-region loci prompted speculation that the phenotypic expression of two I-region genes is a general phenomenon which may provide the key for understanding the mechanism of Ir gene function and cellular collaboration in the immune response. Benacerraf and Dorf (10) have shown that Ir gene complementation is often more effective in the cis than in the trans configuration. This concept is further supported by the data reported for GLPhe (10-12) which indicate that both of the complementing genes must be expressed in each of the cell types participating in the interaction. Failure to detect complementation for the majority of antigens under H-2-linked Ir-gene control might be attributed to the limited number of available intra-I- region recombinant strains

    Mitogen- and Stress-Activated Kinase 1 (MSK1) Regulates Cigarette Smoke-Induced Histone Modifications on NF-κB-dependent Genes

    Get PDF
    Cigarette smoke (CS) causes sustained lung inflammation, which is an important event in the pathogenesis of chronic obstructive pulmonary disease (COPD). We have previously reported that IKKα (I kappaB kinase alpha) plays a key role in CS-induced pro-inflammatory gene transcription by chromatin modifications; however, the underlying role of downstream signaling kinase is not known. Mitogen- and stress-activated kinase 1 (MSK1) serves as a specific downstream NF-κB RelA/p65 kinase, mediating transcriptional activation of NF-κB-dependent pro-inflammatory genes. The role of MSK1 in nuclear signaling and chromatin modifications is not known, particularly in response to environmental stimuli. We hypothesized that MSK1 regulates chromatin modifications of pro-inflammatory gene promoters in response to CS. Here, we report that CS extract activates MSK1 in human lung epithelial (H292 and BEAS-2B) cell lines, human primary small airway epithelial cells (SAEC), and in mouse lung, resulting in phosphorylation of nuclear MSK1 (Thr581), phospho-acetylation of RelA/p65 at Ser276 and Lys310 respectively. This event was associated with phospho-acetylation of histone H3 (Ser10/Lys9) and acetylation of histone H4 (Lys12). MSK1 N- and C-terminal kinase-dead mutants, MSK1 siRNA-mediated knock-down in transiently transfected H292 cells, and MSK1 stable knock-down mouse embryonic fibroblasts significantly reduced CS extract-induced MSK1, NF-κB RelA/p65 activation, and posttranslational modifications of histones. CS extract/CS promotes the direct interaction of MSK1 with RelA/p65 and p300 in epithelial cells and in mouse lung. Furthermore, CS-mediated recruitment of MSK1 and its substrates to the promoters of NF-κB-dependent pro-inflammatory genes leads to transcriptional activation, as determined by chromatin immunoprecipitation. Thus, MSK1 is an important downstream kinase involved in CS-induced NF-κB activation and chromatin modifications, which have implications in pathogenesis of COPD
    corecore