1,487 research outputs found

    NAD+-metabolizing ecto-enzymes shape tumor–host interactions: The chronic lymphocytic leukemia model

    Get PDF
    AbstractNicotinamide adenine dinucleotide (NAD+) is an essential co-enzyme that can be released in the extracellular milieu. Here, it may elicit signals through binding purinergic receptors. Alternatively, NAD+ may be dismantled to adenosine, up-taken by cells and transformed to reconstitute the intracellular nucleotide pool. An articulated ecto-enzyme network is responsible for the nucleotide–nucleoside conversion. CD38 is the main mammalian enzyme that hydrolyzes NAD+, generating Ca2+-active metabolites. Evidence suggests that this extracellular network may be altered or used by tumor cells to (i) nestle in protected areas, and (ii) evade the immune response. We have exploited chronic lymphocytic leukemia as a model to test the role of the ecto-enzyme network, starting by analyzing the individual elements that make up the whole picture

    NAMPT and NAPRT: Two Metabolic Enzymes With Key Roles in Inflammation

    Get PDF
    Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively. By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming of cellular metabolism and in the control of the activity of NAD-dependent enzymes, including sirtuins, PARPs, and NADases. However, during evolution they both acquired novel functions as extracellular endogenous mediators of inflammation. It is well-known that cellular stress and/or damage induce release in the extracellular milieu of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs), which modulate immune functions through binding pattern recognition receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT were reported in several metabolic and inflammatory disorders, including obesity, diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic shock. This review will discuss available data concerning the dual role of this unique family of enzymes

    Targeting metabolic reprogramming in metastatic melanoma: The key role of nicotinamide phosphoribosyltransferase (NAMPT)

    Get PDF
    Cancer cells rewire their metabolism to support proliferation, growth and survival. In metastatic melanoma the BRAF oncogenic pathway is a master regulator of this process, highlighting the importance of metabolic reprogramming in the pathogenesis of this tumor and offering potential therapeutic approaches. Metabolic adaptation of melanoma cells generally requires increased amounts of NAD+, an essential redox cofactor in cellular metabolism and a signaling molecule. Nicotinamide phosphoribosyltransferase (NAMPT) is the most important NAD+ biosynthetic enzyme in mammalian cells and a direct target of the BRAF oncogenic signaling pathway. These findings suggest that NAMPT is an attractive new therapeutic target, particularly in combination strategies with BRAF or MEK inhibitors. Here we review current knowledge on how oncogenic signaling reprograms metabolism in BRAF-mutated melanoma, and discuss how NAMPT/NAD+ axis contributes to these processes. Lastly, we present evidence supporting a role of NAMPT as a novel therapeutic target in metastatic melanoma
    • …
    corecore