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Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinate

phosphoribosyltransferase (NAPRT) are two intracellular enzymes that catalyze the

first step in the biosynthesis of NAD from nicotinamide and nicotinic acid, respectively.

By fine tuning intracellular NAD levels, they are involved in the regulation/reprogramming

of cellular metabolism and in the control of the activity of NAD-dependent enzymes,

including sirtuins, PARPs, and NADases. However, during evolution they both acquired

novel functions as extracellular endogenous mediators of inflammation. It is well-known

that cellular stress and/or damage induce release in the extracellular milieu of

endogenous molecules, called alarmins or damage-associated molecular patterns

(DAMPs), which modulate immune functions through binding pattern recognition

receptors (PRRs), such as Toll-like receptors (TLRs), and activate inflammatory

responses. Increasing evidence suggests that extracellular (e)NAMPT and eNAPRT are

novel soluble factors with cytokine/adipokine/DAMP-like actions. Elevated eNAMPT

were reported in several metabolic and inflammatory disorders, including obesity,

diabetes, and cancer, while eNAPRT is emerging as a biomarker of sepsis and septic

shock. This review will discuss available data concerning the dual role of this unique

family of enzymes.
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INTRODUCTION

One of the key roles of the innate immune system is to initiate immune responses against invasive
pathogens. Pathogen-associatedmolecular patterns (PAMPs) include sugars/lipoproteins or nucleic
acids [i.e., bacterial DNA as unmethylated repeats of dinucleotide CpG, double-stranded (ds) or
single-stranded (ss) RNA] (1, 2). PAMPs can initiate immune responses through the activation of
classical pattern recognition receptors (PRRs), among which there are toll-like receptors (TLRs),
NOD-like receptors (NLRs), retinoic acid inducible gene I (RIG- I)-like receptors (RLRs), C-type
lectin receptors (CLRs), multiple intracellular DNA sensors, and other non-PRRs DAMPs receptors
(2–4). However, these receptors can be engaged also by endogenous ligands. It is now largely
accepted that cells in conditions of hypoxia, acidosis, redox imbalance, hypertonic/hypotonic stress,
and intracellular ion or cytoskeleton perturbations, can release small endogenous molecules called
damage-associated molecular patterns (DAMPs) or sometimes “danger signals” or “alarmins,”
triggering immune responses through the activation of PRRs (4–6). Intriguingly, many of these
DAMPs have a well-characterized intracellular function and have been serendipitously identified
in the extracellular space where they initiate inflammatory responses, independently of pathogen
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infection, a phenomenon referred to as sterile inflammation
(4, 7, 8). Similar to pathogen-induced inflammation, DAMPs
can prime neutrophils, macrophages, and dendritic cells (DCs),
but also non-immune cells, including endothelial and epithelial
cells and fibroblasts (7). Activation of these cells leads to
the production of several cytokines and chemokines, which
in turn recruit inflammatory elements and trigger adaptive
immune responses. Although sterile inflammation plays an
essential role in tissue repair and regeneration, unresolved
chronic inflammation is deleterious to the host leading to
the development of metabolic, neurodegenerative, autoimmune
disorders, and cancer (4).

Since their original definition as DAMPs in 2003, the list
of endogenous molecules are increased considerably (4) and
now includes high-mobility group box 1 protein (HMGB-1),
heat shock proteins (HSPs), histone and extracellular matrix
components (for example, hyaluronic acid and biglycan). All
these molecules exert pro-inflammatory functions through
binding to TLRs. HMGB-1 is among the most studied DAMPs.
It is a nuclear DNA binding protein that can be found in the
extracellular space not only as a consequence of necrosis, but also
through dedicated secretion mechanisms (9, 10). Extracellularly,
HMGB-1 elicits pro-inflammatory effects linked to consequent
TLR4 binding and activation of the nuclear-factor kappa B (NF-
kB) signaling pathway (11, 12). In animal models, HMGB-1 is
as a late mediator of lethal systemic inflammation, involved in
delayed endotoxin lethality (13). Others DAMPs include F-actin,
Sin3A associated protein 130 (SAP130), β-glucosylceramide
and N-glycans binding to CLRs; monosodium urate (MSU)
crystals, cholesterol crystals, β-amyloid (Aβ), and adenosine 5′-
triphosphate (ATP) that activate NLRP3 inflammasome (4). In
addition, numerous cytokines [i.e., interleukin (IL)-1β, tumor
necrosis factor (TNF), and type I interferon (IFN-I)], pro-
inflammatory proteins, such as interferon-induced protein 35,
and bioactive lipids like lysophospholipids, are referred as
“inducible DAMPs” or “conditional DAMPs” (14).

Nucleotides and nucleosides, for long time considered
simply electron-shuttling agents involved in supporting energy
metabolism, are gaining interest together with the network
of enzymes that control their synthesis and degradation.
Interestingly, while all these factors have a well-characterized
intracellular function, they can be released in the extracellular
space, where they bind and activate different sets of cellular
receptors, including purinergic and PRRs. For example, ATP
a key intracellular energy molecule, can be massively released
by passive leakage when cells become injured, stressed, or
even necrotic, acting as a DAMP (15). Extracellular ATP and
its derivative nucleotides (adenosine, AMP, ADP) synthesized
by endonucleotidases achieve many of their effects through
purinergic receptors, via inflammatory cascades and the
production of proinflammatory cytokines (16, 17). Among
the enzymes involved in nicotinamide adenine dinucleotide
(NAD) synthesis, nicotinamide phosphoribosyltransferase
(NAMPT)—the focus of this review—emerges as new mediator
of inflammation. Intracellularly, it catalyzes the first and rate-
limiting step in the biosynthesis of NAD from nicotinamide
(Nam) (18, 19). Increased eNAMPT levels are reported

in conditions of acute or chronic inflammation (18, 20–
25). eNAMPT effects are mostly linked to the activation
of an inflammatory signature mainly in macrophages,
with recent data suggesting that it binds TLR4, therefore
adding the enzyme to the number of “danger” signals
activating this receptor (26). NAMPT is structurally and
functionally related to a second NAD-biosynthetic enzyme
(NBE), i.e., nicotinate phosphoribosyltransferase (NAPRT),
which is rate-limiting in the NAD salvage pathway that
starts form nicotinic acid (Na) (27–29). Our group recently
discovered the presence of NAPRT in extracellular fluids
(eNAPRT), highlighting a role also for this enzyme as a ligand
for TLR4.

This review summarizes the current knowledge on
NAMPT and NAPRT, as intracellular NBEs involved in the
regulation/reprogramming of cellular metabolism, and as
cytokines/DAMPs in the extracellular environment. Lastly, we
will discuss the role of these enzymes especially in relation to the
development of inflammatory conditions, including cancer, and
their potential therapeutic values.

NAD LEVELS MODULATE CELLULAR
TRANSCRIPTIONAL RESPONSES AND
METABOLIC ADAPTATION

Our knowledge on NAD biology has grown exponentially
over the past few years, including biosynthetic and degrading
pathways. A general decrease in cellular NAD is described
in many age-related diseases, whereas increased NAD levels
are associated to inflammatory conditions, including cancer.
Figure 1 illustrates the main NAD-biosynthetic and -consuming
pathways, as well as the crosstalk between intracellular (i)NAD
and eNAD.

NAD: Energy Cofactor
As energetic co-enzyme, NAD is essential as electron acceptor
donor in various metabolic pathways including cytosolic
glycolysis, serine biosynthesis, tricarboxylic acid cycle (TCA),
oxidative phosphorylation, as well as cell redox state homeostasis
redox reactions (30, 31). Cofactor of almost 300 dehydrogenase,
NAD is primarily used during glycolysis in the sixth step of
the enzymatic chain by glyceraldehyde phosphate dehydrogenase
(GAPDH) and at the end of the process by lactate dehydrogenase
(LDH), catalyzing the interconversion of pyruvate and lactate
and simultaneously of NADH and NAD. The final glycolytic
product pyruvate, can be metabolized to produce acetylCoA
by the pyruvate dehydrogenase complex (PDC), a reaction
accompanied by NAD reduction to NADH (32). During the TCA
cycle, NAD is reduced to NADH moieties in several key steps
by isocitrate dehydrogenase (IDH), oxoglutarate dehydrogenase
(OGD), and malate dehydrogenase (MDH). NADH produced in
all these reactions, working as electron equivalent redistributor, is
used by the electron transport chain (ETC) to generate ATP (33).

The ratio between NAD/NADH and their relative
phosphorylated form (NADP/NADPH), are also critical for
enzymatic defense systems against oxidative stress, regulating
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FIGURE 1 | Intra/extra NAD interconnections and NAD-metabolizing enzymes. Schematic representation of the network of NAD-metabolizing cell surface and

intracellular enzymes and their products. Several NAD precursors derived from diet can be internalized to generate iNAD, via NBE activities, to support energy

metabolism, signaling, and other biological processes through the activities of intracellular NAD-consuming enzymes (PARPs and Sirtuins). These enzymes release

Nam that, in turn, via NAMPT-dependent salvage pathway, support NAD production. Once in the extracellular space because of secretion/leakage, via Cx43, or

because of direct extracellular synthesis from precursors (not confirmed), eNAD can function by binding purinergic receptors (P2Y, P2X), an event that leads to

intracellular signaling and inflammatory conditions. Alternatively, eNAD can also be metabolized by a series of ecto-enzymes of the cell surface (CD38/CD157, ARTs,

CD73, ENPP1) generating different metabolites (cADPR, ADPR, and NAADP) involved mainly in Ca2+-signaling. The end product of the reaction, adenosine, can

modify signal transduction by acting on P1 purinergic receptors, generally leading to immunosuppression. In the square brackets are indicated the range of iNAD

[200–500µM] or eNAD [100–500 nM]. Trp, tryptophan; Nam, nicotinamide; NR, nicotinamide riboside; Na, nicotinic acid; NBEs, NAD-biosynthetic enzymes; NAMPT,

nicotinamide phosphoribosyltransferase; ARTs, mono adenosine diphosphate (ADP)-ribose transferases; PARPs, poly ADP-ribose polymerases; Cx43, connexin 43;

ADPR, ADP ribose; cADPR, cyclic ADP ribose; NAADP, nicotinic acid adenine dinucleotide phosphate; NMN, nicotinamide mononucleotide; ADO, adenosine; ENPP1,

ectonucleotide pyrophosphatase/phosphodiesterases.

redox homeostasis through the main cellular scavenging systems
which are the glutathione (GSH/GSSG) and the thioredoxin-
mediated (Trx-SH/Trx-SS) mechanisms (34–37). In this context,
NADPH is the indispensable reducing agent for ROS elimination
and redox homeostasis, primarily produced by glucose-6-
phosphate dehydrogenase (G6PD) and -phosphogluconate
dehydrogenase (6PGD) in the pentose phosphate
pathway (36).

NAD: A Pleiotropic Signaling Molecule
Independently of its redox properties, NAD is also the substrate
of enzymes with fundamental roles in gene expression and cell
signaling (38). In these reactions, NAD is cleaved at the glycosidic
bond between Nam and ADP-ribose acquiring the characteristic
of signaling molecule (27).

The large family of NAD consuming enzymes includes
mono adenosine diphosphate (ADP)-ribose transferases
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(ARTs) and poly ADP-ribose polymerases (PARPs), the NAD-
dependent deacetylases, sirtuins (SIRT1-7), and the cyclic
ADP-ribose hydrolases, NAD glycohydrolases, ectonucleotide
pyrophosphatase/phosphodiesterases and ecto-5’-nucleotidase
(CD38/CD157 and ENPP1/CD73) (19, 39, 40) (Figure 1).

Through their functional activities of post-translational
modifications (ADP-ribosylation and deacetylation), or through
the modulation of Ca2+ signaling, these enzymes regulate gene
transcription, cell differentiation, cell cycle progression, circadian
rhythm, DNA repair, chromatin stability, cell adaptation to stress
signals, and immune responses (41, 42). Therefore, PARPs and
sirtuins represent connecting elements between the metabolic
state of a cell and its signaling and transcriptional activities (43).

Extracellular NAD and Its Biological Role
The eNAD concentration is in the range of 100–500 nM,
considerably lower than its intracellular levels (200–500µM) (39,
44–46). eNAD and iNAD levels are highly linked, due to intra-
extra membrane transport of NAD precursors, intermediates of
reaction and NAD itself (47). The canonical view is that NAD is
unable to cross lipid bilayers, but it enters the cell using dedicated
NAD transporters, such as connexin 43 (Cx43) channels, or
exits through exocytosis (45, 48–50). In addition, conditions of
environmental stress can induce NAD release (51–53). On the
other hand, whether there is direct eNAD synthesis remains
controversial (39) (Figure 1), despite the presence of extracellular
precursors and biosynthetic enzymes. Specifically, it is known
that among the different forms of vitamin B3 (NAD precursor),
transport of Na is mediated by membrane carrier systems
potentially including either a pH-dependent anion antiporter or a
proton cotransporter (54, 55). Nam is present extracellularly and
its uptake is possible either as direct transport in intact form or
converted to salvage pathway metabolites. However, NAMPT’s
substrates ATP and 5-phosphoribosyl-1-pyrophosphate (PRPP)
were shown to be unavailable in sufficient quantities in the
extracellular space (56) to support direct eNAD generation.

eNAD can bind different subtypes of purinergic P2 receptors,
including P2Y11, leading to the opening of L-type Ca2+ channels
and activation of a cAMP/cADPR/[Ca2+]i signaling cascade,
ultimately causing increased proliferation and migration (57).
In T cells and monocytes, P2X7 receptor activation generally
results in Ca2+ internalization, opening a non-selective, large
membrane pore, causing cell death (58, 59). eNAD also acts
as a neurotransmitter, released by stimulated terminals of
mammalian central nervous system and peripheral nervous
system neurons, binding to post-synaptic P2Y1 receptors, similar
to ATP (60).

The very low levels of eNAD are due to its rapid
metabolism/degradation by NAD-catabolic enzymes present on
the surface of the cell (61), suggesting that also NAD metabolites
may mediate cellular responses in the extracellular environment.

eNAD is degraded by three main classes of specific
ectoenzymes: CD38 and CD157 (62, 63), ARTs (64), ENPP1 and
CD73 (61, 65, 66). NADase, ENPP1 and CD73 can lead to the
formation of adenosine (ADO), a potent immunosuppressant
factor, independently of the activity of CD39 (61, 67, 68).
Beside generating ADO, eNAD can be degraded to nicotinamide

mononucleotide (NMN) by CD38, generating Nam which can
cross plasma membranes and be re-converted to NAD through
NAMPT and NMN adenylyltransferase (NMNAT) (69). On
the other side, NMN can be also used by CD73, which
generates nicotinamide riboside (NR) (66, 70), that, likely
through equilibrative nucleoside transporters (ENTs), can be
imported as NADprecursor (71, 72) (Figure 1). Recently, Slc12a8
was identified as specific NMN transporter (73), suggesting that
NMN can be internalized without conversion to NR. Studies
on cell type expression pattern of this transporter will clarify
this possibility.

NAD BIOSYNTHESIS: THE ENZYMATIC
FUNCTIONS OF NAMPT AND NAPRT

NAD turnover within the cell is dynamic, displaying circadian
oscillations that are regulated by the core clock machinery
CLOCK:BMAL1 (74, 75). Total intracellular levels are
maintained between 200 and 500µM, depending on the
cell type or tissue, increasing in response to different stimuli (43).
NAD homeostasis is the result of the balance between a number
of NAD-consuming reactions and NAD-biosynthetic routes, via
three distinct pathways: the de novo biosynthetic pathway, the
Preiss–Handler pathway, and the salvage pathway, as reviewed
in Houtkooper et al. (27), Ruggieri et al. (29), and Audrito et al.
(42) and illustrated in Figure 2.

Specifically, de novo NAD biosynthesis starts with the
catabolism of the amino acid tryptophan to kynurenine by
indoleamine-2,3-dioxygenase. Kynurenine is then metabolized
through the kynurenine pathway to quinolinic acid (QA),
which is converted by quinolate phosphoribosyltransferase
(QPRT), rate-limiting enzyme, to Na mononucleotide (NaMN).
The Preiss–Handler pathway metabolizes kynurenine pathway–
derived NaMN or diet-derived Na, or Na as a product of Nam
deamidation by intestinal flora (76) to NAD, via NAPRT rate-
limiting activity. In the salvage pathway, NAMPT metabolizes
Nam and PRPP to NMN in a rate limiting step, which is then
converted into NAD. In a further salvage route, NR, derived
from diet, can be used by nicotinamide riboside kinase (NRK),
to generate NAD (Figure 2).

Quantitatively, the Nam salvage pathway is the most relevant
in mammalian cells. Several lines of evidence support this
observation. First, Nam is the most abundant NAD precursor
in the bloodstream (39), and can be easily introduced by
diet (vitamin B3). Second, Nam is a by-product of all NAD-
metabolizing enzymes activity, increasing its availability (77).
Third, the rate limiting enzyme NAMPT (EC 2.4.2.12) is
expressed in all mammalian tissues (78), as detailed below.
Linked to this, NAMPT gene deletion in mice is embryonically
lethal (79), suggesting the importance of this route to
regenerate NAD. In this pathway, Nam N-methyltransefase
(NNMT) recently emerged as an evolutionarily conserved
regulator of Nam availability. In fact, NNMT N-methylates Nam
preventing its accumulation and inhibition of NAD-consuming
enzymes, while on the other side, limiting its availability to
NAMPT (80, 81).
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FIGURE 2 | NAD biosynthetic pathways. NAD can be synthetized de novo starting from Trp (pink rectangle), or through salvage routes from Nam and NR (green

rectangle), or metabolizing Na in the Preiss-Handler pathway (light blue rectangle). NAD-precursors are indicated in the blue ovals. The rate-limiting enzymes of each

biosynthetic pathway are indicated in red, the other enzymes involved in the reactions in orange. For NAMPT and NAPRT crystal structures are shown. NAD

synthesized from Nam via NAMPT is in turn used by NAD-consuming enzyme activities that release Nam, making it available for continuous NAD regeneration.

NAMPT, nicotinamide phosphoribosyltransferase; NAPRT, nicotinate phosphoribosyltransferase; NRK, nicotinamide riboside kinase; QPRT, quinolinate

phosphoribosyltransferase; NMNATs, nicotinamide mononucleotide adenylltransferases; NADS, NAD synthase; Nam, nicotinamide; NR, nicotinamide riboside; Na,

nicotinic acid; Trp, tryptophan; QA, quinolinic acid; NMN, nicotinamide mononucleotide; NAMN, nicotinate mononucleotide; NAAD, nicotinate adenine dinucleotide;

NADase, NAD-glycohydrolase; ARTs, mono adenosine diphosphate (ADP)-ribose transferases; PARPs, poly ADP-ribose polymerases.

The functional NAMPT forms a homodimer to catalyze
the conversion of Nam and PRPP to NMN. Structural and
site-directed mutagenesis studies by Khan et al. demonstrated
that Asp219 is fundamental in defining the substrate specificity
of NAMPT (82). Wang et al. showed that NAMPT has
an autophosphorylation activity and hydrolyzes ATP.
Autophosphorylation can increase its enzymatic activity
(83). Recently, NAMPT was found to be a direct substrate of
SIRT6 deacetylation, a post-translational mechanism that up-
regulates its enzymatic activity (84). On the contrary, mutations
of His247, a central conserved residue in the active site of the
enzyme, significantly decreases or abolishes NAMPT enzymatic
activity (83).

NAPRT (EC 2.4.2.11) catalyzes the conversion of Na and
PRPP to NaMN and pyrophosphate (PPi). The enzyme,
originally named NaMN pyrophosphorylase, was first described
by Handler in human erythrocytes, where it increases NAD
levels (85).

NAPRT activity is more tissue-specific. Although enzyme
activity can be detected in most mouse tissues (86), Na acts as
a more efficient precursor than Nam in mice liver, intestine, heart

and kidney (87). Furthermore, Na is more efficient than Nam in
raising NAD levels in cells exposed to oxidative stress (56, 85, 88).

Contrary to NAMPT, NAPRT is not inhibited by NAD, which
explains its significantly higher efficiency in raising NAD levels
in vivo (56, 89). Moreover, NAPRT is strongly activated by
phosphate (85), while ATP behaves as an allosteric modulator of
the enzyme (29, 85, 90).

In 2015 Marletta et al. resolved the structure of human
(h)NAPRT, highlighting a high degree of structural homology
between the human and the bacterial NaPRTases due to
evolutionary adaptation (91). As with NAMPT, the functional
NAPRT enzyme works as dimers, and despite sharing very
limited sequence similarity, hNAPRT shows a molecular fold that
closely resembles that firstly described for hNAMPT (83). This
opened new hypotheses of shared motifs in NAMPT and NAPRT
involved in the binding of extracellular proteins to the receptor,
as described in section eNAMPT Functions.

The presence of these multiple NAD biosynthetic routes
most likely reflects differences in tissue distribution and/or
intracellular compartmentalization of NBEs (39, 46, 76, 92, 93).
Our group recently showed that NAMPT and NAPRT are mainly
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located in cytoplasm and nucleus, while NRK is more expressed
in mitochondria, impacting on iNAD levels and response to
NAMPT inhibitors (39, 46, 76, 92, 93).

Identification, Characterization, and
Expression of NAMPT and NAPRT
NAMPT

The enzyme NAMPT is highly conserved with orthologs
in bacteria (94), invertebrate sponges (95), amphibians (96),
birds and mammals (97). Not long after its discovery in
1994 by Samal et al. as a pre-B-cell colony enhancing factor
(PBEF) secreted by activated lymphocytes and bone marrow
stromal cells, Rongvaux et al. (98) showed that murine PBEF
could catalyze the conversion of Nam to NMN, a rate-
limiting step in NAD biosynthesis. These authors also showed
that Actinobacillus pleuropneumonia, a bacterium lacking
the NadV gene, transformed with murine PBEF acquires
NAD independence, confirming that the enzymatic activity is
evolutionarily conserved from bacteria to mammals (98).

In recent years, NAMPT has received increasing attention due
to new evidence indicating that it is a pleiotropic protein that may
function as NBE, as well as growth factor, cytokine and adipokine
[reviewed in (18, 25)]. Although NAMPT lacks the typical signal
peptide needed for extracellular secretion, the mature protein
can be found in the medium of many cellular cultures due to an
active secretion mechanism (99, 100). However, in conditions of
cell damage eNAMPT can be released as passive diffusion across
cell membranes, as usual for other DAMPS. In addition, the 3’
untranslated region (UTR) contains multiple TATT motifs that
are characteristic of cytokines (99).

The human NAMPT gene spans over 34.7 kb on the long
arm of chromosome 7 (7q22) and contains 11 exons and 10
introns (101, 102). Two distinct promoter sites are present
in the 5’-flanking region, suggesting the possibility of tissue
specific differential expression (101). The region proximal to the
promoter is GC-rich and contains 12 binding sites for specificity
protein 1 (SP-1), multiple activating protein 2 (AP-2), lymphoid
enhancer-binding factor 1 (LF-1), cAMP response element-
binding protein (CREB), and signal transducer and activator
of transcription (STAT) binding sites (101, 103). Furthermore,
the presence of two hypoxia inducible factor (HIF) response
elements (HREs) suggest that the gene is upregulated under
hypoxic conditions (104). The distal promoter region contains
several CAAT boxes and TATA-like sequences, as well as binding
sites for nuclear factor 1 (NF-1), nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB), CCAAT/enhancer
binding protein (C/EBPβ), the glucocorticoid receptor (GR),
and activating protein 1 (AP-1) (101). The majority of these
transcription factors, including NF-1, AP-1, AP-2, NF-κB, and
STAT, regulate cytokine expression and their presence in the
promoter region of NAMPT suggests a role for this enzyme in
immunity (42, 105).

Recently, 65 kb downstream of the NAMPT transcription
start site on chromosome 7 (hg19: 105,856,018–105,860,658), a
putative NAMPT enhancer was identified as specifically marked
by H3K27ac and/or an accessible DNase I hypersensitive (DHS)

signal (106). Fine-mapping of the 4.6-kb putative enhancer by
stepwise 1-kb deletions or insertions identified the 1-kb enhancer
“B” region as responsible for (i) the control of expression of
the NAMPT gene through c-MYC and MAX activities. (ii) In
addition, it is the target of H3K27 acetylation; (iii) it regulates
iNAD levels; and (iv) it is required for cell survival in NAMPT-
dependent tumors (106). Some genetic polymorphisms were
identified in the human NAMPT gene, potentially responsible
for NAMPT expression. Different representation of these Single
Nucleotide Polymorphisms (SNPs) were described in patients
with acute respiratory distress syndrome, type 2 diabetes, glucose
and lipid metabolism alterations, diastolic blood pressure and
hypertensive disorders compared to controls (107).

In the cell, NAMPT is abundant in the cytosol and present
in the nucleus (108–110). Recently, Svoboda et al. showed that
nuclear NAMPT translocation is a regulated process induced
by genotoxic, oxidative, or dicarbonyl stress, mainly to finance
NAD production for increased PARP and sirtuin activity
(111). Moreover, NAMPT cytosol/nucleus localization changes
according to cell cycle phases: it is excluded from the nucleus
immediately after mitosis and it migrates back into it as the
cell cycle progresses (111). These data were confirmed also by
Grolla et al. that demonstrated a transport of NAMPT into
the nucleus, GAPDH-mediated, in response to DNA damage
(112). On the contrary, the presence of NAMPT in mitochondria
remains controversial (30, 46, 109).

Furthermore, an increasing number of cell types have been
shown to release eNAMPT, including adipocytes, hepatocytes,
cardiomyocytes, activated immune cells and several tumor cells
(100, 113–117). While it was shown that a regulated positive
secretory process exists (79), the exact mechanisms of release are
presently under investigation. The most accredited hypothesis,
yet to be confirmed in most cell types, is that eNAMPT is
secreted through a “non-classical” secretory pathway, which is
not blocked by monensin and brefeldin A, two inhibitors of the
classical endoplasmatic reticulum (ER)–Golgi secretory pathway
(79, 113, 118, 119). A recent paper showed that eNAMPT
is carried in extracellular vesicles (EVs) through systemic
circulation in mice and humans. EV-contained-eNAMPT is
internalized into cells, enhancing NAD synthesis (120). The
same conclusion was obtained by another group identifying that
eNAMPT is actively secreted via exosomes frommicroglia during
neuroinflammation due to ischemic injury (121). However, this
mechanism of secretion could be context dependent: in fact in
3T3-L1 adipocytes eNAMPT release and secretion do not appear
to occur through microvesicles (113).

Whether the extracellular form possesses specific differences
in terms of truncations or post-translational modifications is
presently unclear. Different groups suggested that deacetylation
by sirtuins can impact eNAMPT secretion (84, 122), adding a new
layer of complexity.

NAPRT

Highly conserved across species, the human NAPRT gene is
located at chromosome 8q24.3, containing 12 exons. Similar to
NAMPT, intracellular NAPRT is located in both the nucleus and
the cytoplasm, but not detected in mitochondria (46, 71, 123).
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Our group firstly reported the presence of an extracellular form
of NAPRT in biological fluids in physiological (healthy donor’s
blood) and inflammatory conditions opening a new field of
investigations (124).

Several information about NAPRT expression and regulation
emerged in tumors, in relation to the efficacy of NAMPT
inhibitors (NAMPTi) as potential anti-cancer agents (125, 126),
as described in the dedicated section NAMPT and NAPRT
in Tumors.

EXTRACELLULAR NAMPT AND NAPRT:
ADIPOCYTOKINES AND DAMPS

In addition to a direct effect on NAD and its metabolites, the
enzymes involved in synthesis of NAD also have important
extracellular functions, as summarized in Figure 3.

eNAMPT Functions
eNAMPT/PBEF was first identified as an immunomodulatory
cytokine able to synergize with interleukin 7 (IL-7) and stem
cell factor (SCF) to promote pre-B cell colony formation (99).
It is now well-established that eNAMPT is a soluble factor that
is up-regulated upon activation in innate and adaptive immune
cells, including neutrophils, monocytes, andmacrophages, and in
epithelial and endothelial cells (18, 127). NAMPT expression can
be rapidly induced by inflammatory signals, in particular both
pathogen-derived lipopolysaccharide (LPS) and host-derived
inflammatory stimuli (TNF-α, IL-1β, IL-6, leptin) in amniotic
epithelial cells, macrophages, human osteoarthritic chondrocytes
and a synovial fibroblast cell line (101, 103, 128, 129).

eNAMPT has a variety of biological functions (Figure 3):

(i) it is an important mediator of inflammatory programs

(18, 130) and (ii) it acts as a cytokine that modulates the

FIGURE 3 | Extracellular functions of NAMPT and NAPRT. iNAMPT and iNAPRT are involved in NAD generation inside of cells, but can be also secreted, through

unknown mechanisms, in the extracellular space due to cellular stresses (damage/inflammation/pathological conditions). Extracellularly, they can act as

adipocytokine/DAMP binding to TLR4 and triggering intracellular signaling promoting differentiation/polarization of myeloid cells, activation of inflammosome, secretion

of pro or anti-inflammatory cytokines. The final outcome depends on the cellular context, for example in tumors eNAMPT creates an immunosuppressive

microenvironment, favoring cancer progression, while eNAPRT in sepsis amplifies the inflammatory response. TLR4, Toll-like receptor 4; MD2, myeloid differentiation

2; MYD88, myeloid differentiation primary response gene 88; NAMPT, nicotinamide phosphoribosyltransferase; NAPRT, nicotinate phosphoribosyltransferase; NBEs,

NAD-biosynthetic enzymes; Nam, nicotinamide; Na, nicotinic acid; DAMP, damage-associated molecular pattern; PARPs, poly ADP-ribose polymerases.
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immune response (42). Notably, the cytokine-like functions
appear, at least in part, independent of the protein catalytic
activity, as inferred by the use of an enzymatically inactive
NAMPT H247E mutant that retains the ability to activate
signaling pathways (26, 83, 131, 132). In keeping with this view,
NAMPT’s substrates PRPP and ATP are apparently unavailable
extracellularly to sustain its enzymatic activity (56). Following
NAMPT treatment, interleukins IL-1β, IL-6, IL-10, and tumor
necrosis factor- α (TNF-α) are up-regulated and secreted
by peripheral blood mononuclear cells (PBMCs) and CD14+

monocytes (133). Co-stimulatory molecules such as CD40,
CD54, and CD80 are also up-regulated in response to eNAMPT
exposure, an effect mediated through the activation of PI3-kinase
and MAPKs pathways (133). Furthermore, in macrophages
NAMPT increases matrix metalloproteinases (MMPs) expression
and activity (134). In addition, (iii) eNAMPT has anti-apoptotic
effects on immune cells, including neutrophils and macrophages,
for example it promotes macrophage survival after induction
of endoplasmic reticulum (ER) stress triggering IL-6 secretion
and phosphorylation of STAT3 (103). (iv) eNAMPT is also
reported as an adipokine, also known as visfatin, playing a
critical role in the regulation of glucose-stimulated insulin
secretion in pancreatic β cells (21, 135). While a direct role
for insulin receptor in eNAMPT-mediated cytokine release was
discarded (18, 133), eNAMPT is up-regulated in obese and
diabetic patients: it is enriched in visceral fat and secreted by
adipocytes (113, 136, 137). The role as adipokine seems more
related to the extracellular generation of NMN: in fact systemic
administration of NMN to aged mice or mice subjected to
a high-fat diet restores normal NAD levels in white adipose
tissue and liver, and ameliorates glucose intolerance and type
II diabetic syndrome (138). (v) eNAMPT can also act as a
pro-angiogenic factor, promoting endothelial cell proliferation,
migration, and capillary tube formation in a concentration-
dependent manner in human umbilical vein endothelial cells
(HUVEC) (139–142). These proliferative effects of eNAMPT
seem to be mediated, or at least partially mediated by vascular
endothelial cell growth factor (VEGF), the master regulator
of endothelial cell program (139). Thus, eNAMPT upregulates
VEGF synthesis and secretion, as well as the expression of the
VEGF receptor 2, which has been proposed to mediate the
angiogenic actions of VEGF (139). Beside VEGF, in endothelial
cells eNAMPT upregulates production of other pro-angiogenic
soluble factors, such as fibroblast growth factor-2 (FGF-2),
monocyte chemoattractant protein-1 (MCP-1) and IL-6 (143,
144). Indeed, both MCP-1 and FGF-2 have also been identified
as mediators of eNAMPT-induced angiogenesis (143). Beyond
in vitro studies, the angiogenic activities of eNAMPT were
demonstrated in ex vivo and in vivo approaches (139, 140).

eNAPRT Functions
Starting from the structural and functional similarity between
human NAMPT and NAPRT (91), our group for the first time
investigated whether NAPRT exists in an extracellular form, thus
sharing with NAMPT its moonlighting abilities (124). By setting
up a new luminex/ELISA assay, we dosed eNAPRT in a cohort
of > 100 plasma from normal blood donors (HD), highlighting

a mean concentration similar to that recorded for eNAMPT
(in the range of 1.5–2.0 ng/ml), with no differences according
to gender or age. We used mass spectrometry to confirm the
presence of NAPRT peptides in human plasma. Moreover, we
demonstrated that endogenous eNAPRT is enzymatically active
(86, 124). Analyzing eNAPRT in sera from patients with acute
or chronic inflammatory conditions, we demonstrated that this
enzyme strongly increased in acute inflammatory diseases such
as sepsis and septic shock, driving inflammatory responses
related to the activation of macrophages (Figure 3). We also
observed that cellular stress [i.e., treatment with TNF-α and
cycloheximide to trigger apoptosis, or with ionomycin and
carbonyl cyanide 3-chlorophenylhydrazone (CCCP) to trigger
necrosis] is accompanied by marked increase of eNAPRT in
macrophage culture media (124), as previously described also for
HMGB-1 (9) and others DAMPs (145).

eNAMPT/eNAPRT in Myeloid Cells
Function: the Role of TLR4
NAD synthesis has a driving role in myeloid differentiation
and in supporting macrophage inflammatory responses (42, 146,
147), prompting investigation on the function of NAMPT and
NAPRT in these cells.

Increasing evidence demonstrated a direct role of NAMPT
in regulating the differentiation program and the metabolic
phenotypes of myeloid cells. Both iNAMPT and eNAMPT
influence monocyte/macrophages differentiation, polarization
and migration (132, 146, 148). We described a role for
eNAMPT in creating an immunosuppressive and tumor-
promoting microenvironment in chronic lymphocytic
leukemia, where eNAMPT is important for the differentiation
of monocytes toward tumor-supporting M2 macrophages
(132). Recently, it was demonstrated that iNAMPT acts also
on myeloid-derived suppressor cells (MDSCs), where NAMPT
blocks CXCR4 transcription, via a SIRT1/HIF-1α axis. The
activation of this circuit, in turn, leads to MDSCs mobilization
and enhances the production of nitric oxide, promoting
immunosuppression (149).

The NAMPT/NAD/SIRT1 axis seems to play a relevant role
in myeloid cell activation. NAMPT-dependent NAD generation
is crucial in the metabolic switch characterizing the transition
from the early stage of acute inflammation, primarily relies on
glycolysis, to the later adaptation phase more dependent on
fatty acid oxidation (FAO) for energy production (150–152).
Moreover, NAMPT/NAD levels significantly increased during
activation of pro-inflammatory M1 macrophages (153). In
a further feedback loop some cytokines, including IL-6 and
TNF-α, induced during monocyte activation, are able to promote
NAMPT expression via HIF-1α. In turn, NAMPT, triggering
NF-kB signaling pathway, sustains IL6 and TNFA transcription
forcing myeloid cell activation (131). It has been also shown that
NAMPT/NAD/SIRT1 axis can regulate neutrophilic granulocyte
differentiation via CCAAT/enhancer-binding protein α/β
(C/EBPα/β) induction, ultimately, up-regulating granulocyte
colony-stimulating factor (G-CSF). In turn, G-CSF further
increases NAMPT levels (148). NAMPT inhibition, reducing
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NAD levels, thereby decreasing SIRT1 activity, leads to the
dramatic elevation of acetylated C/EBPα levels and reduces
amounts of total C/EBPα protein, accompanied by diminished
mRNA expression of C/EBPα target genes (G-CSF, G-CSFR, and
ELANE) (148, 154). Moreover, exposure of the acute myeloid
leukemia cell line HL-60 to recombinant NAMPT or NAMPT
overexpression induced myeloid differentiation of these cells
per se (154).

A controversial issue in NAMPT biology is whether its
cytokine-like properties are all linked to its enzymatic activity
or are mediated by the binding to a cell surface receptor. In
2015, Camp et al. showed that eNAMPT produces robust TLR4-
mediated NF-kB signaling activation, by directly binding TLR4-
MD2 (26) (Figure 3). However, due to possible contamination
of LPS, the natural ligand of TLR4, in the recombinant NAMPT
preparations used to treat cells in vitro, the interpretation of these
results remains controversial. Our group recently confirmed the
binding of eNAMPT to TLR4 in macrophage cellular model
(124), performing surface plasmon resonance (SPR) under the
same conditions previously established for the NAMPT-TLR4
interaction (26). More recently, the same group that firstly
identified TLR4 as NAMPT receptor published new details about
this interaction (155). At the same time, a direct role of NAD
in activating the inflammasome was recently reported by Yang
et al. The authors demonstrated that NAD manipulation, using
NAMPT inhibitors or the treatment with NAD precursors, affects
TLR4-mediated NF-κB activation and PYD-domain 3 (NLRP3)
inflammasome activity connecting intracellular NAD levels and
inflammation (156).

Similar properties were attributed to eNAPRT. By using
a surface coated with an anti-NAPRT antibody, we showed
that a pre-mixed solution of recombinant (r)NAPRT and
rTLR4 resulted in increased binding when compared to
rNAPRT alone, indicating that a direct molecular interaction
was occurring between the proteins (124). TLR4 triggering
by rNAPRT activates an inflammatory signature in human
macrophages differentiated from PBMC of healthy donors, as
observed also using rNAMPT, promoting robust activation
of NF-κB signaling, transcription and secretion of pro-
inflammatory cytokines, including IL-1β, IL-8, TNF-α, CCL3,
and inflammatory mediators such as caspase-1 (CASP1) and
P2X purinoreceptor (124) (Figure 3). These effects are lost
in TLR4-silenced macrophages. Accordingly, in macrophages,
derived from TLR4−/− mice, rNAPRT exposure was not able
to activate NF-κB signaling and cytokine production. Lastly, we
demonstrated that the rNAPRT enzymatic deficient mutant is
still able to trigger inflammosome in macrophages, indicating
that the enzymatic activity is irrelevant to the pro-inflammatory
functions of eNAPRT.

rNAPRT, as previously observed for eNAMPT (132, 146, 148),
is also able to force monocyte differentiation into macrophages,
up-regulating macrophage colony-stimulating factor (M-CFS).
This function in triggering macrophage differentiation is a
unique feature of eNAMPT/eNAPRT and not shared by LPS,
suggesting that even though TLR4 is a receptor for multiple
soluble factors and proteins, each specific ligand has a peculiar
role. Notably, eNAPRT could be detected in macrophage culture

supernatants, suggesting that macrophages are a source of
eNAPRT in vivo.

Lastly, in this paper, we demonstrated that the signaling
functions of hNAMPT and hNAPRT are not an evolutionarily
conserved trait. In fact, the bacterial rNAPRT (PncB) or the
bacterial rNAMPT (NadV) invariably failed to activate NF-
κB signaling in macrophages. Furthermore, a comparison of
the surface properties of the bacterial and hNAPRT proteins
revealed the presence in hNAPRT of an arginine-rich stretch
(65RFLRAFRLR) forming a large mouth-like positively charged
area on the top of the dimer, which is absent in the bacterial
ortholog, but is present in a similar form in NAMPT, and could
be involved in the binding to TLR4 (124). Even if several issues
remain to be investigated, these data support the notion of
another NBE acting as extracellular mediator with a direct role
in macrophage functions, binding TLR4.

NAMPT AND NAPRT AS BIOMARKERS OF
CHRONIC AND ACUTE INFLAMMATORY
DISEASES

iNAMPT over-expression as well as increased circulating levels
of eNAMPT were documented in metabolic/inflammatory
conditions including obesity, type 2 diabetes, metabolic
syndromes, atherogenic inflammatory diseases, therefore
supporting a role for eNAMPT as a potential biomarker
of cardio- cerebro-vascular disorders (157–160). Enhanced
eNAMPT levels are also described in kidney transplantation
recipients (161), polycystic ovary syndrome (162), preeclampsia
(163), and acute coronary syndrome (158, 164). Increased
eNAMPT levels were additionally reported in non-metabolic
chronic inflammatory diseases [i.e., osteoarthritis (103) and
acute lung injury (ALI) (165, 166)], characterized by systemic
inflammation. eNAMPT also seems to play a role in several
types of infections like sepsis (167, 168) or intrauterine infection
(chorioamnionitis) (169), and in autoimmune inflammatory
diseases including psoriasis (170), rheumatoid arthritis (RA)
(171) Crohn’s disease (CD) and ulcerative colitis (UC) (172).
Table 1 summarized main activities of i/eNAMPT in these
pathological conditions.

The first indication that NAPRT can be present in the
extracellular space was published by our group in 2019. We
dosed eNAPRT in sera from patients with sepsis or septic shock
due to bacterial infections. Our results indicated that median
eNAPRT levels picked-up to ∼25 ng/ml in septic individuals
(compared to a median of about 2 ng/ml in HD), underlying
high levels of this enzyme in this acute inflammatory condition
(124). Circulating NAPRT has a role in mediating endotoxin
tolerance at low/physiological doses, in fact the highest plasmatic
eNAPRT levels were dosed in patients who died because of
septic shock, while those with low concentrations survived.
We confirmed a significant association between high levels of
eNAPRT and mortality, suggesting that eNAPRT is a novel
risk factor in sepsis (124). Even if the biological explanation
behind this observation is still partly missing, findings in our
work are significant starting points to evaluate the functional
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TABLE 1 | NAMPT and NAPRT functions in chronic and acute inflammatory diseases.

Type of disease Main findings Therapeutic options References

e/iNAMPT

Type 2 diabetes -Higher eNAMPT levels in cases than controls

-eNAMPT induces a diabetic phenotype in

pancreatic islets

Blocking Ab? (157, 173)

Obesity -Higher eNAMPT levels in cases than controls

-iNAMPT supports adipose plasticity and the

pathological progression to obesity.

Blocking Ab?

Pharmacological inhibitors?

(157, 174)

Atherogenic inflammatory

diseases; cardio- cerebro-

vascular disorders; stroke;

acute coronary syndrome

-eNAMPT prognostic marker of atherosclerosis,

endothelial dysfunction, and vascular damage

-Active player promoting vascular inflammation

-Deregulated NAD metabolism

Blocking Ab?

Pharmacological inhibitors (pre-clinical)

(158–160, 164, 175)

Kidney transplant recipients -eNAMPT was significantly higher in kidney allograft

recipients than in HD

-Associated with endothelial damage

Blocking Ab? (161)

Polycystic ovary syndrome;

preeclampsia

-Higher eNAMPT levels in cases than controls

- eNAMPT induces the expression of pro-

angiogenic factors

Blocking Ab? (162, 163)

Acute lung injury (ALI); acute

respiratory distress syndrome

(ARDS)

-Higher eNAMPT levels in cases than controls

-eNAMPT induces the secretion of inflammatory

cytokines and activation

of signaling pathways

-iNAMPT supports NAD metabolism,

inhibiting apoptosis

Blocking Ab (pre-clinical)

Pharmacological inhibitors (pre-clinical)

(165, 166)

Sepsis; septic shock -Higher eNAMPT levels in cases than controls

-eNAMPT induces the secretion of inflammatory

cytokines and activation

of signaling pathways,

supporting inflammation

-Diagnostic and prognostic biomarkers (risk factor)

Blocking Ab? (167, 168)

Intrauterine infection

(chorioamnionitis)

-Higher eNAMPT levels in cases than controls Blocking Ab? (163, 169)

Psoriasis -Higher eNAMPT levels in cases than controls

-Positive correlation with disease severity

Blocking Ab? (170)

Rheumatoid arthritis (RA);

osteoarthritis

-Higher eNAMPT levels in cases than controls

-eNAMPT induces the secretion of inflammatory

cytokines and activation

of signaling pathways

-Block NAMPT have reduced RA progression

and inflammatory markers

Blocking Ab?

Pharmacological inhibitors (pre-clinical)

(103, 171, 176)

Inflammatory bowel disease

(IBD); Crohn’s disease (CD);

and ulcerative colitis (UC)

-iNAMPT/eNAMPT overexpression/secretion

-Association with inflammation, hypoxia (active) and

tissue repair (inactive disease)

Blocking Ab?

Pharmacological inhibitors (pre-clinical)

(172, 177)

Solid tumors: colorectal, ovarian,

breast, gastric, prostate, thyroid,

pancreatic cancers, melanoma,

gliomas, sarcoma, endometrial

=carcinomas, and hematological

malignancies

-iNAMPT/eNAMPT over expression

-Negative prognostic marker - Regulates metabolic

adaptation, DNA repair, gene expression, signaling

pathways, cell growth, invasion, stemness, epithelial

to mesenchymal transition program,

metastatization, angiogenesis, secretion of both

pro-inflammatory and immunosuppressive

cytokines, resistance to genotoxic stress

Blocking Ab (pre-clinical)

Pharmacological inhibitors (pre-clinical and

phase I-II-III)

(18, 25, 106, 178, 179)

e/iNAPRT

Sepsis/septic shock -Higher eNAPRT levels in cases than controls

-eNAPRT activates inflammosome

-Risk factor for patient survival

Blocking Ab? (124)

Prostate, ovarian, colorectal,

and pancreatic cancers

-NAPRT gene amplification -iNAPRT

overexpression; -correlation with a BRCAness gene

expression signature

-NAPRT silencing reduced energy status, protein

synthesis, and cell size

Pharmacological inhibitors (pre-clinical) (88, 106, 123, 180)

HD, healthy donors; Ab, antibody.
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role of eNAPRT as DAMP in sepsis, but also in others acute
inflammatory conditions (Table 1).

NAMPT and NAPRT in Tumors
In tumors increased i/eNAMPT have been reported, not only
as biomarkers, but also as drivers of tumor progression
(18, 25, 178), detailed in Table 1. Cancer cells require high
energetic needs to support their proliferation. Increased demand
of NAD, obtained through NAMPT overexpression, is needed
to finance cellular metabolism and NAD-consuming reactions,
including DNA repair activity (41). NAMPT is overexpressed
in a broad range of solid tumors including colorectal, ovarian,
breast, gastric, prostate, thyroid, pancreatic cancers, melanoma,
gliomas, sarcoma, endometrial carcinomas, and hematological
malignancies, as reviewed in Dalamaga et al. (178), Yaku et al.
(179), Audrito et al. (25), and Chowdhry et al. (106). NAMPT, as
intracellular and extracellular factor, exerts a direct role on tumor
cells increasing tumor aggressiveness, correlating with worse
prognosis and regulating different processes including metabolic
adaptation, DNA repair, gene expression, signaling pathways, cell
growth, invasion, stemness, epithelial to mesenchymal transition
program, metastatization, angiogenesis, secretion of both pro-
inflammatory and immunosuppressive cytokines, resistance to
genotoxic stress, as reviewed in Dalamaga et al. (178) and Audrito
et al. (25). Very recently, Nacarelli et al. described also a role
of NAMPT in governing the strength of the proinflammatory
senescence-associated secretory (SASP) phenotype observed
during senescence, a process implicated in tissue aging and
cancer (181).

Recently, amplification of NAPRT gene was detected in
prostate, ovarian, and pancreatic cancers (106, 123). NAPRT
gene amplification in tumors correlated with NAPRT expression
in matched normal tissues, suggesting a role for tissue context
in determining which cancers amplify NAPRT (106). Duarte-
Pereira et al. in 2016 extensively studied expression of NAMPT
and NAPRT in different tumor types and normal tissues
(88). The initial step in that study was to evaluate NAPRT
and NAMPT expression in a set of normal human tissues,
highlighting a widespread expression for both genes. In tumors,
while NAMPT was expressed at mRNA and protein levels in
all samples analyzed, NAPRT protein levels were highly diverse,
being undetected in several cases. Likewise, NAPRT protein
is differentially expressed between cell lines, with markedly
decreased expression in carcinoma cell lines MKN28 (gastric),
786-O (renal), HCT116 (colorectal), and in all leukemia cell
lines tested (HL-60, NB4, and ML2) (88). Another paper
highlighted a role for NAPRT, together with NAMPT, as negative
prognostic marker in colorectal cancer, based on TCGA RNA-
sequencing data and protein tissue array (180). In a recent
work the overexpression of NAPRT in ovarian cancer, correlated
with a BRCAness gene expression signature. In this context,
NAPRT silencing reduced energy status, protein synthesis, and
cell size (123). These results suggest that both transcriptional
and post-transcriptional mechanisms regulate the expression
of the NAPRT gene in cancer types, including mutations in
transcription factor binding sites of CREB and Sp1, to promoter
methylation and alternative splicing (88). Epigenetic silencing of

NAPRT, driven by the hypermethylation of CpG islands activity
of mutant Protein Phosphatase Mg2+/Mn2+ Dependent 1D
(PPM1D), also known as Wip1, is a recently defined mechanism.
As a consequence, PPM1D mutated tumors are particularly
sensitive to NAMPTi (182). It was shown that the lack of NAPRT
expression in some tumors, such as neuroblastoma, glioblastoma
(183) or lymphomas (184), puts NAPRT as a biomarker for the
use of Na as a chemoprotectant agent during treatment with
NAMPT inhibitors (126). In NAPRT-negative tumors, NAMPT
inhibition provides a novel synthetic lethal therapeutic strategy
by inducing metabolic stress, while normal cells are rescued by
Na via activation of the NAPRT pathway (123, 183–185).

We demonstrated the presence of eNAPRT in sera from
patients with a diagnosis of cancer, including solid tumors
(prostate, lung and bladder cancer, mesothelioma and metastatic
melanoma) and hematological malignancies [myeloma, chronic
lymphocytic leukemia (CLL), and diffuse large cell lymphoma
(DLCL)] (124) as summarized in Table 1. The median value of
circulating eNAPRT is double compared to HD, suggesting a
possible role of this enzyme in tumor microenvironment.

Several issues remain to be addressed. First and foremost,
it will be important to understand the relationship between
eNAPRT and eNAMPT: our findings suggest that they have
multiple roles in acute vs. chronic inflammation, engaging TLR4
in different pathological conditions (Table 1) and alerting the
immune system to distinct sets of “dangers.”

IMPLICATIONS FOR THERAPY AND
CONCLUDING REMARKS

NAMPT inhibitors were primarily developed as anticancer
agents, depleting NAD and causing metabolic crash and tumor
cell death (Table 1).

For iNAMPT selective pharmacological inhibitors exist,
the best studied being FK866 (also known as APO866) and
GMX1778 (also known as CHS-828), among others (25, 178,
186–189). These inhibitors have been studied in cancer cell lines
and animal models showing cytotoxicity and tumor regression
(178, 190). Despite these important results in vitro and in vivo,
phase I clinical trials in advanced solid tumors and leukemia
showed no objective tumor remission and toxicity (191, 192).
One of the known mechanism leading to the partial failure
of NAMPTi treatment is due to the concomitant expression
of NAPRT (88, 106, 123, 125, 126, 184), that can overcome
NAMPT inhibition. A complete analysis of expression of these
two NBE in tumors should be made to design better therapeutic
strategies that deplete NAD improving efficacy. Development of
novel NAPRTi, to obtain complete depletion of NAD in tumor
insensitive to NAMPTi due to the overexpression of NAPRT
should also be considered. Previous studies indicated the ability
of structural analogs of Na to inhibit NAPRT enzymatic activity
(85, 89). Among this class of compound, 2-hydroxinicotinic acid
(2-HNA) is the most promising, showing significant inhibition
of NAPRT enzymatic activity and function in ovarian cancer in
vitro and in xenograft models (123). The use of NAPRT inhibitors
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appears as a promising strategy to overcome NAPRT-mediated
resistance to NAMPT inhibitors in patients (Table 1).

Blocking the extracellular cytokine-like function of eNAMPT
and eNAPRT would be very useful to restore immune
competence in cancer, as well as, infection setting (Table 1).
In the tumor microenvironment, neutralization of eNAMPT
using blocking antibodies could be effective to repolarize myeloid
cells (TAMs/MDSCs) against tumor. Some groups/companies
are working on the production of these antibodies (193),
hypothesizing a combination strategy with immunotherapy,
or a double inhibition of i/eNAMPT. Blocking eNAPRT in
acute inflammatory conditions, such as in septic patients,
could be an important strategy to prevent the damaging
action of a massive secretion of eNAPRT leading to decreased
survival of patients, but this remains, at this moment, only a
speculative hypothesis.

In conclusion, in this review we summarized current
knowledge on these two old enzymes involved in NAD
biosynthesis that can powerfully modulate immune responses.
If NAMPT has now an acknowledged role in regulating several
cellular processes in physiological and pathological conditions,

and as biomarker in several diseases, the biology of NAPRT,
especially as new soluble factor, acting as DAMP in acute
inflammation, needs to be extensively studied to determine
potential pharmacological settings.
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