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Opinion statement

In the last 10–15 years, the way to treat cancers has dramatically changed towards
precision medicine approaches. These treatment options are mainly based on selective
targeting against signaling pathways critical for or detrimentally activated in cancer cells
in cancer cells, as well as exploiting molecules that are specifically expressed on neoplastic
cells, also known as tumor-associated antigens. These considerations hold true also in the
hematological field where a plethora of novel targeted agents have reached patients’
bedside, significantly improving clinical responses. Chronic lymphocytic leukemia (CLL) is
an example of how targeted therapies, such as BTK, PI3K, or Bcl-2 inhibitors as well as
anti-CD20 antibodies, have improved patients’ management, even when adopted as
frontline treatment. However, these advancements do not apply to Richter’s syndrome
(RS), the transformation of CLL into a very aggressive and fatal lymphoma, occurring in 2–
10% of patients. RS is usually a fast-growing lymphoma of the diffuse large B cell or the
Hodgkin’s variant, with a dismal prognosis. Despite advancements in depicting and
understanding the genetic background of RS and its pathogenesis, no significant clinical
results have been registered. In the last couple of years, several studies have started to
investigate the impact of novel drugs or drug combinations and some of them have
opened for clinical trials, currently in phase I or II, whose results will be soon available.
This review will present an overview of current and most recent therapeutic options in RS,
discussing also how results coming from xenograft models may help in designing and
identifying novel treatment opportunities to overcome the lack of effective therapies.

http://crossmark.crossref.org/dialog/?doi=10.1007/s11864-022-00973-1&domain=pdf


Introduction

The landscape of lymphomas is currently rapidly chang-
ing and becomingmore complex, both because of novel
subtype classifications based on the genetic and tran-
scriptomic profiles of neoplastic cells [1–5], and due to
more treatment options, that are progressively available.
These two paths are paving the way for the transition
towards personalized approaches where patients will be
cured based on cancer cell characteristics to achieve the
best response while minimizing side effects.

RS is defined by the WHO classification of tumors of
hematopoietic and lymphoid tissues as the develop-
ment of a high-grade aggressive lymphoma in a previous
or concomitant background of CLL [1]. RS is typically a
diffuse large B-cell lymphoma (DLBCL) [6, 7], with only
a minority of cases (0.5–5%) presenting a Hodgkin’s
variant [8, 9]. Even though the prognosis of RS is gener-
ally poor, a significant difference is registered when
considering the clonal relatedness to the CLL phase.
Indeed, clonally related cases show a median survival
of approximately 12 months, while clonally unrelated
RS are characterized by a median survival of 65 months
[10]. Beside the aggressiveness of the disease, an element
of poor survival for RS patients is the lack of effective
therapies. Indeed, while treatment options for CLL
patients have significantly increased with the introduc-
tion of targeted agents, such as rituximab, ibrutinib, or

venetoclax [11•], resulting in improvedOS and different
treatment regimens to be adopted depending on the
genetic andmolecular features of CLL cells, almost noth-
ing has changed for RS patients. In the last couple of
years, this gap has started to close with novel agents or
drug combination strategies being tested in clinical tri-
als, also thanks to the availability of representative pre-
clinical models.

The incidence rate of RS has been estimated 0.5–1%
per year, with an overall incidence in CLL patients of 5–
16% [12, 13]. However, a still open point regarding RS
incidence is whether treatment regimens adopted in the
CLL phase may somehow exert a selective pressure,
finally pushing toward RS transformation. Epidemiolog-
ical results are still controversial, depending also on
patient cohorts analyzed. Recent analyses considering
treatment-naïve CLL patients who underwent only novel
agent therapies showed no increase in the number of RS
transformation. On the contrary, when considering
relapsed/refractory CLL patients, the incidence raised
up to 2–15% following ibrutinib, venetoclax, or idelali-
sib treatments [14–18].

Results coming from large and prospective cohorts
will clarify in the next future the impact of these novel
therapies in potential selection ofmore aggressive clones
that can eventually transform into RS.

Treatment options

Currently, RS patients are treated with the same therapeutic regimens
commonly adopted for aggressive B-cell non-Hodgkin lymphomas or de
novo DLBCL, mainly based on chemo-immunotherapy and stem cell
transplantation (SCT), depending on the fitness of the patients. Howev-
er, in the former case, only limited efficacy with frequent relapses are
registered [19], while SCT can be adopted only in fit RS patients [20,
21]. These limitations require additional investigation of alternative and
more effective therapeutic strategies. In the last years, different trials
have started with the aim of testing the clinical efficacy of novel com-
pounds or drug combinations. Moreover, generation of RS patient–
derived xenograft models has been of help for the designing and pre-
clinical validation of selective therapeutic approaches.

Here, we present a brief overview of the currently available (mainly chemo-
immunotherapy and SCT) treatment options for RS patients, moving then to
novel agents that are presently under investigation.
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Current treatments

Chemo-immunotherapy
Different chemotherapy or chemo-immunotherapy regimens are adopted to
treat RS patients. Chemotherapy alone, mainly based on cyclophosphamide,
doxorubicin, vincristine, and prednisone (CHOP) administration, results in
limited overall response rate (ORR; approximately 20–30%) and a median
overall survival (OS) of few months (4–8 months) [22, 23]. Its efficacy is
slightly improved when combined with rituximab (R), a human/murine chi-
meric anti-CD20 monoclonal antibody (mAb). R-CHOP resulted in an ORR of
67% and a median OS of 21months, three-time longer than CHOP alone [22–
24]. On the contrary, no significant clinical improvements compared to che-
motherapy alone have been obtained by the CHOP-O treatment, where ritux-
imab was replaced by ofatumumab, another humanized mAb anti-CD20 [25,
26], R-EPOCH (rituximab, etoposide, cyclophosphamide, doxorubicin, vincris-
tine, and prednisone) [27], or R-hyper-CVXD/R-MA regimens, an intensive
treatment scheme based on fractioned cyclophosphamide, vincristine, liposo-
mal daunorubicin, and dexamethasone in combination with rituximab alter-
nated to methotrexate and cytarabine plus rituximab [28, 29].

Despite the unsatisfactory results obtained and apart from the ongoing
clinical trials (Table 1), the use of chemo-immunotherapy for RS patients
remains the frontline therapy, underlining the urgent need for novel and more
effective therapeutic strategies.

Stem cell transplantation
An alternative approach to chemo-immunotherapy is either the autologous or
allogenic-SCT, which however can only be adopted in fit RS patients, who
generally represent a minority of patients (10–15%) [30]. Clinical data showed
that RS patients who underwent allogenic-SCT as post remission therapy had
longer survival compared to patients who received no additional therapy or SCT
as salvage therapy, with some difference in terms of OS depending on the
cohort analyzed (estimated 3-year OS of 36% for allogenic-SCT and 59% for
autologous-SCT) [20, 23, 30]. These results have been recently confirmed in
different studies, revealing a 5-year OS of 58% and confirming the long-term
efficacy of SCT [22, 31•, 32, 33]. Moreover, a meta-analysis of the existing
medical literature focused on the clinical efficacy of allogenic-SCT, performed
in 2020, highlighted an encouraging ORR of 79%, including 33% of complete
responses, and an OS rate of 49% [34].

Novel therapeutic approaches

Antibody-based therapies

Naked antibodies

The programmed death 1 (PD-1) pathway plays a crucial role in tumor host
immunity evasion and its blockade has emerged as an effective anti-cancer
immunotherapy [35]. Preclinical studies suggested that PD-1 or PD-ligand
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1 (PD-L1) blocking antibodies have efficacy in selected hematological
malignancies, including DLBCL and other NHLs, all expressing high levels
of these surface antigens [36, 37]. In addition, RS patients are characterized
by a high expression of both PD-1 and PD-L1 [38, 39], opening for their
targeting exploiting selective naked antibodies, capable of interfering with
this signaling pathway (Fig. 1A).
Pembrolizumab is a PD-1 blocking antibody whose safety and clinical
activity were initially evaluated in a phase II clinical trial that enrolled a
small cohort of RS patients, most of them (approximately 70%) having
been previously treated with ibrutinib, resulting in a 44% of ORR and 11
months of OS. This efficacy was associated to an acceptable safety profile,
with only 20% of patients presenting severe hematologic toxicity [40].
These promising results were not overlapping the ones obtained by the
KEYNOTE-170 multicenter phase II trial (NCT02576990) that enrolled
relapsed/refractory RS patients. Indeed, in this subset of patients, pembro-
lizumab monotherapy resulted in a reduced clinical efficacy, with only 1
complete and 2 partial responses, leading to a 13% ORR [41].
Nivolumab is another PD-1-binding immune checkpoint inhibitor, capa-
ble of potentiating T-cell activity, that has already showed efficacy in several
solid tumors [42–44]. The clinical impact of this humanized mAb, ad-
ministered either alone or in combination with targeted agents (ibrutinib
or venetoclax), has been evaluated in a small cohort of RS patients. Results
were not encouraging with 90% of patients experiencing treatment failure,
disease progression, and a median OS from the first dose of only 2 months
[45].
Despite the low clinical efficacy observed with anti-PD-1 inhibitors in RS,
different clinical trials are currently ongoing testing the impact of co-
targeting strategies, where checkpoint inhibitors are administered together
with molecules targeting critical signaling pathways for B cells, such as BTK
or PI3K (NCT04271956, NCT02535286; Table 1).

Drug-conjugated antibodies

A promising therapeutic strategy for cancer treatment is based on antibody-
drug conjugates (ADCs), engineered therapeutics combining the selectivity
of a mAb, that recognizes a tumor-associated antigen, to the cytotoxicity of
a payload. Their success depends on their effectiveness and the lack of off-
target toxicities [46, 47]. Several ADCs are currently approved by FDA or in
late-stage clinical development for treatment of both solid tumor and
hematological malignancies [48•].
The clinical impact of ADCs in RS has been recently explored by our group,
taking advantage of four RS patient–derived xenograft models [49], and
targeting two molecules that are highly and selectively expressed by these
neoplastic cells. Firstly, we explored the effects of VLS-101, an ADC com-
prising UC-961, a mAb targeting the extracellular domain of receptor
tyrosine kinase-like orphan receptor 1 (ROR1) [50], linked to the anti-
microtubule agent monomethyl auristatin E (MMAE). ROR1 is expressed
by CLL cells and other cancers but not by healthy adult tissues, making it an
attractive tumor-specific therapeutic target [51, 52]. Once VLS-101 is bound
to its target, the complex is internalized and delivered to lysosomes, where

Novel Approaches for the Treatment of Patients with Richter’s Syndrome Iannello et al. 531



MMAE is released via proteolytic cleavage and free to inhibit cell-cycle
progression and to induce apoptosis of the target cell. VLS-101 has shown
promising efficacy to treat RS, resulting in cell-cycle arrest and apoptosis
ex vivo, and significantly reducing tumor burden in vivo resulting in a
prolonged animal survival. Moreover, VLS-101 was characterized by a high
selectivity since no clinical effects were registered in a ROR1-negativemodel
and no adverse toxic effects showed in treated mice [53]. Based on these
promising results, a phase I clinical trial testing VLS-101 in RS and other
aggressive hematological malignancies is currently ongoing
(NCT03833180).
The second target we explored in RS to be targeted with ADC is CD37, a
surface molecule belonging to the tetraspanin family, showing a peculiar
pattern of expression. Indeed, it is expressed by mature B and transformed

Fig. 1. Schematic representation of novel therapeutic approaches to treat RS patients. The main novel therapeutic approaches to
treat RS patients are summarized. Small molecules targeted therapies (A), antibody-based therapies (B), and CAR-T (C). Bcl-2 (B-
cell lymphoma 2), XPO1 (exportin 1), BTK (Bruton tyrosine kinase), BCR (B-cell receptor), PI3K (phosphoinositide 3-kinase), ADC
(antibody-drug conjugate), ROR1 (receptor tyrosine kinase-like orphan receptor 1), PD1 (programmed death 1), PD-L1
(programmed death 1 Ligand), TCR (T-cell receptor), RNA Pol II (RNA polymerase 2), CAR (chimeric antigen receptor), NES (nuclear
export signal).
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leukemic/lymphoma cells, but not on normal T, NK, pro-B, and plasma
cells. Given this expression profile, CD37 has been recently proposed as an
actionable target for the treatment of CLL and non-Hodgkin lymphomas
[54–58].
RS cells, both primary samples and PDXmodels, are characterized by CD37
surface expression, comparable to the one detected in DLBCL and follicular
lymphoma cells. Three different anti-CD37 ADCs were tested, all generated
using amanitin as a payload, a toxin that once internalized in the target cell
is released from the mAb and free to localize to the nucleus where it binds
to the RNA polymerase II, finally inhibiting messenger RNA synthesis.
These compounds showed high selectivity and specificity as no targeting
and toxic effects were highlighted in CD37-negative cells. Treatment of RS
cells with these compounds, both ex vivo and in vivo, induced apoptosis
and significantly prolonged survival of treated mice, after a single-dose
administration of these ADCs, making CD37 an interesting target for RS
patients (Fig. 1A) [59].

Bispecific antibodies

Bispecific monoclonal antibodies (bsAbs) are designed to bind two differ-
ent epitopes or antigens, frequently expressed by distinct cells, and have
been largely explored to drive an effector to a target cell [60•]. This ap-
proach has been recently adopted for the treatment of different B-cell
malignancies [61•], including RS, where a refractory patient underwent a
rapid and complete response following therapy with the bispecific anti-
CD19/CD3 antibody blinatumomab, opening the way for a clinical trial
(NCT03121534) with the aim of testing its efficacy and safety in RS (Fig.
1A) [62].

Chimeric antigen receptor T-cell therapy (CAR-T)
An innovative approach that has recently entered in the onco-hematological
field is the targeting of CD19, an antigen exclusively expressed on normal and
pathological B cells, via CAR-T [63, 64]. CAR-T cell therapy is designed to get T
cells to fight against cancer prior ex vivo genetic manipulation of the receptor to
better identify cancer antigens (Fig. 1B).

The first attempts of RS treatment with this approach were conducted few
years ago in 2 patients with poor responses, including disease progression [65]
and evolution to plasmablastic lymphoma [66]. Additional studies performed
in relapsed patients who underwent hematopoietic stem cell transplantation
and chemo-immunotherapy showed only partial responses [67, 68]. More
recently, different trials based on larger cohorts of RS patients obtained quite
satisfactory results, reaching an ORR of 71% and 56%, 4 weeks after cell
therapy. Despite these results, a lower antitumor activity was registered in the
subset of patients presenting large lymph node burden compared to those with
a lower lymph node bulk [69–71]. In one of this study, CAR-T therapy was
administered in combination with ibrutinib resulting in an increased clinical
efficacy [71]. In line with these encouraging data, in a recent study that included
9 RS patients, heavily pretreated with chemo-immunotherapy, ibrutinib or
ibrutinib in combination with venetoclax, an ORR of 90% with 5 patients
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showing a complete response in a median follow-up of 6 months was obtained
[72].

Taken together, these results are encouraging, but prospective studies with
larger cohorts of patients are needed to better understand how CAR-T can be
combined with the available targeted therapies, which the patients who can
benefit the most from this approach.

Small molecules–targeted therapy
Chemotherapy is one of the most effective therapeutic options against cancer,
even though it is accompanied by several side effects. A breakthrough in this
field has been the introduction of targeted therapies, which are based on
pharmacological agents capable of selectively interfering with proteins involved
in tumorigenesis. Focusing on molecular changes that are uniquely associated
to a specific type of cancer may lead to improved therapeutic benefits, accom-
panied by a more safety profile, tailoring treatments to an individual patient’s
tumor. Besides mAbs and ADCs, targeted therapy may involve the use of small
molecule inhibitors, drugs capable of recognizing and block kinases, epigenetic
regulatory proteins, and DNA damaged repair enzymes and proteasome [73].

Hematological malignancies have been an example of how small molecule
inhibitors can be successfully adopted in the clinics [74] and treatment of CLL
has been revolutionized by the introduction of BTK, PI3K, and Bcl-2 inhibitors
[75].

These small molecule inhibitors have started to be translated in the clinic for
the treatment of RS patients, even though results are still limited and sometimes
discouraging (Fig. 1C).

Ibrutinib, a BTK inhibitor, has shown well tolerability in small cohorts of
patients but poor clinical effects with only partial responses and a complete
response obtained only in one patient [76–79]. Similar limited results have
been obtained also with acalabrutinib, an irreversible BTK inhibitor, that
showed a good tolerability profile, but poor responses when used as mono-
therapy [80]. Clinical data in RS patients are still missing for ARQ 531, another
reversible non-specific BTK inhibitor, that has been tested in murine models of
CLL and aggressive B-cell lymphomas [81], resulting in a prolonged survival of
mice compared to animals treated with ibrutinib [82]. An ongoing phase I trial
(NCT03162536) is enrolling patients, including RS patients, for testing safety,
tolerability, and efficacy of ARQ 531 [83, 84].

AKT, another element of the BCR signaling cascade downstream to the PI3K
kinase, has been shown to be active in RS and its constitutive activation in the
Eμ-TCL1 CLL model can induce an aggressive lymphoma that mimics the
clinical features of RS, suggesting that PI3K/AKT kinases play a key role in RS
transformation [85, 86]. Idelalisib is a PI3Kδ inhibitor that has shown great
clinical activity in CLL despite a significant toxicity, even in relapsed/refractory
patients, when combined either with rituximab orwith bendamustine regimens
[75].When administered to RS patients in a small cohort trial (4 patients), it has
demonstrated some activity with no disease progression in all patients, one
complete response and two partial responses [87]. Moreover, an independent
case report confirmed idelalisib efficacy in RS, with a complete response
achieved in 3 weeks, even though patient relapsed rapidly after drug discontin-
uation due to severe side effects [88].
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More recently, our group has shown preclinical efficacy of duvelisib, a dual
PI3Kδ/γ inhibitor, in PI3K expressing RS-PDX models [85]. Inhibition of the
PI3K signaling pathway resulted in AKT downregulation and GSK3β activation,
leading to ubiquitination and subsequent degradation of both c-Myc and Mcl-
1, finally resulting in an increased apoptotic rate of RS cells. Moreover, treat-
ment of RS-PDX mice resulted in a significant reduction of tumor volume and
in a prolonged survival ofmice, while no effects were obtained in RS cells with a
reduced PI3Kγ expression underlining the high selectivity of this compound
[85]. These encouraging results opened for further investigation on PI3K inhi-
bition in RS patients and provided a rationale for a clinical trial
(NCT03892044) investigating the clinical activity of duvelisib together with
the anti-PD1 nivolumab. Moreover, given the selective activity in PI3K express-
ing cells, these data prompt in favor of amolecular profiling of RS patients prior
to treatment decision to identify in advance those who will benefit the most
from a specific targeted drug administration.

Another interesting molecular target is represented by the anti-apoptotic
protein Bcl-2, whose targeting by Venetoclax, an orally bioavailable BH3 mi-
metic, in CLL patients have shown high percentage of durable responses, even
in patients carrying the chromosome 17p deletion [18, 89]. When tested in RS-
PDX models, venetoclax showed efficacy in Bcl-2-expressing cells, inducing
apoptosis and prolonging mice survival [85]. However, clinical trials testing
its efficacy in RS patients as monotherapy resulted only in partial responses [90,
91].

Lastly, one of the small molecule inhibitors that has increasingly gained
attention in cancer treatment in the last years is selinexor, a selective inhibitor of
nuclear export protein XPO1 [92]. Indeed, protein transport across nuclear
membrane is often dysregulated in cancers [93] and XPO1 has been shown to
be overexpressed and/or mutated in several hematological malignancies, in-
cluding CLL and RS, thus representing an interesting target [94, 95]. In a phase I
pilot study, including 6 refractory/relapsed RS patients, selinexor used inmono-
therapy was generally well tolerated and induced partial response in 2 out 5
patients [96]. However, no additional studies are available thus its efficacy in RS
remains to be determined and better explored (Fig. 1C).

Combination strategies
CLL therapy and clinical responses have radically changed since the introduction
of small molecules replacing traditional chemo-immunotherapy approaches
[75]. However, as discussed above, many of these novel compounds are associ-
atedwith poor or partial responses in RS, likely due to amore aggressive behavior
of these cells even because of a more complex karyotype or genetic background.
Therefore, combination of drugs targeting different molecules ormolecular path-
ways can be envisage as an effective strategy to overcome resistance.

Ibrutinib has been already tested in combination with several other agents.
In 2015, Lamar and colleagues reported of a RS patient, heavily treated with
chemo-immunotherapy before and after transformation, who experienced a
significant, but unfortunately temporary, reduction of tumor burden in almost
all infiltrated lymph nodes within 1 month of ibrutinib and rituximab treat-
ment [97]. Similar results have been obtained in 3 patients treated with ibruti-
nib and ofatumumab, another anti-CD20 monoclonal antibody
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(NCT01217749). Two of them had a stable disease for a median time of 10
months, while the other had a partial response, before undergoing disease
progression 5 months later [98]. Finally, BTK inhibition has been tested in
combination with the anti-PD-1 agent nivolumab, in a trial that included
patients with different relapsed/refractory B-cell hematological malignancies
along with 20 RS cases. The best clinical responses were obtained in the RS
cohort, with anORR of 65% and two patients experiencing complete remission.
Due to adverse events in a significant proportion of patients, treatment was
discontinued, but the promising results support for further clinical assessment
[99].

Similar combination trials have been proposed for acalabrutinib and other
BTK inhibitors. In 2019, Appleby and colleagues has started the STELLAR trial
protocol (NCT03899337), a prospective phase II randomized study of R-CHOP
alone or in combination with acalabrutinib in a large cohort of RS patients.
Results from this trial will highlight the safety, feasibility, and clinical activity of
the addition of acalabrutinib to standard R-CHOP for RS [100]. Recently, the
novel BTK inhibitor DTRM-12 has been tested in combination with the mTOR
inhibitor everolimus and pomalidomide in RS, exploring the potential synthet-
ic lethality of this therapeutic setting (NCT04305444). This combination had
an acceptable safety profile and resulted in an ORR of 45%, and it is now
investigated in a phase II expansion study [101].

In the last couple of years, preliminary results on combination strategies
including the Bcl-2 inhibitor venetoclax are coming to the stage for RS treat-
ment. In a phase II trial (NCT03054896), Davids and colleagues evaluated the
therapeutic response of venetoclax in combination with chemo-
immunotherapy regimen based on R-EPOCH. On a cohort of 26 patients, 13
achieved CR and 3 a partial response, with an ORR of 62% and a median OS of
19.6 months, with neutropenia and thrombocytopenia as major toxic effects
[102•].

Encouraging data are also coming from preclinical model of RS. We have
recently showed that the dual targeting of Bcl-2 and PI3K, through the combi-
nation of venetoclax and duvelisib, synergistically induced apoptosis in target
expressing cells both ex vivo and in vivo in RS-PDX models, blocking tumor
growth and significantly prolonging mice survival, even compared to each drug
alone. The molecular mechanism beneath this effect relies on the concomitant
inactivation of Mcl-1, c-Myc, and Bcl-2, via GSK3β activation [85]. Similar
results were obtained combining venetoclax with other BH3 mimetics or with
bromodomain extra-terminal (BET) protein targeting chimera (PROTAC), bi-
functional molecules capable of hijacking the ubiquitin-proteasome system to
induce degradation of BET proteins [103], suggesting that the simultaneous
targeting of key molecular players within RS cells may represents a winning
strategy [104].

Understanding the genetics and biology of RS are necessary steps in deci-
phering the critical pathways these cells rely on and identifying target(s).
Despite advancements in the treatment options, based on different targeting
approaches, RS remains a disease asking for effective therapies. Novel insights
for therapeutic opportunities are expected to come in the next years when
results from several clinical trials as well as from experimental models will be
available and will finally reach patients’ bedside.
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