137 research outputs found

    Knot undulator to generate linearly polarized photons with low on-axis power density

    Full text link
    Heat load on beamline optics is a serious problem to generate pure linearly polarized photons in the third generation synchrotron radiation facilities. For permanent magnet undulators, this problem can be overcome by a figure-8 operating mode. But there is still no good method to tackle this problem for electromagnetic elliptical undulators. Here, a novel operating mode is suggested, which can generate pure linearly polarized photons with very low on-axis heat load. Also the available minimum photon energy of linearly polarized photons can be extended much by this method

    Hsa-miR-196a2 Rs11614913 Polymorphism Contributes to Cancer Susceptibility: Evidence from 15 Case-Control Studies

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a family of endogenous, small and noncoding RNAs that negatively regulate gene expression by suppressing translation or degrading mRNAs. Recently, many studies investigated the association between hsa-miR-196a2 rs11614913 polymorphism and cancer risk, which showed inconclusive results. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a meta-analysis of 15 studies that included 9,341 cancer cases and 10,569 case-free controls. We assessed the strength of the association, using odds ratios (ORs) with 95% confidence intervals (CIs). Overall, individuals with the TC/CC genotypes were associated with higher cancer risk than those with the TT genotype (OR=1.18, 95% CI=1.03-1.34, P<0.001 for heterogeneity test). In the stratified analyses, we observed that the CC genotype might modulate breast cancer risk (OR=1.11, 95%CI=1.01-1.23, Pheterogeneity=0.210) and lung cancer risk (OR=1.25, 95%CI=1.06-1.46, Pheterogeneity=0.958), comparing with the TC/TT genotype. Moreover, a significantly increased risk was found among Asian populations in a dominant model (TC/CC versus TT, OR=1.24, 95% CI=1.07-1.43, Pheterogeneity=0.006). CONCLUSIONS: These findings supported that hsa-miR-196a2 rs11614913 polymorphism may contribute to the susceptibility of cancers

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings In 2021, there were 529 million (95% uncertainty interval [UI] 500–564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8–6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7–9·9]) and, at the regional level, in Oceania (12·3% [11·5–13·0]). Nationally, Qatar had the world’s highest age-specific prevalence of diabetes, at 76·1% (73·1–79·5) in individuals aged 75–79 years. Total diabetes prevalence—especially among older adults—primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1–96·8) of diabetes cases and 95·4% (94·9–95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5–71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5–30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22–1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1–17·6) in north Africa and the Middle East and 11·3% (10·8–11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%.Peer ReviewedPostprint (published version

    Association between B-cell depletion and attack risk in neuromyelitis optica spectrum disorder: An exploratory analysis from N-MOmentum, a double-blind, randomised, placebo-controlled, multicentre phase 2/3 trial

    Get PDF
    BACKGROUND: Inebilizumab is an anti-CD19 antibody approved for the treatment of neuromyelitis optica spectrum disorder (NMOSD) in adults with aquaporin-4 autoantibodies. The relationship between B-cell, plasma-cell (PC), and immunoglobulin depletion with longitudinal reductions in NMOSD activity after inebilizumab treatment was characterised post hoc in an exploratory analysis from the N-MOmentum study (NCT02200770). METHODS: Peripheral blood CD20+ B cells, PC gene signature, and immunoglobulin levels were assessed throughout N-MOmentum (follow-up =2.5 years); correlations with clinical metrics and magnetic resonance imaging (MRI) lesion activity were assessed. FINDINGS: Inebilizumab induced durable B-cell and PC depletion within 1 week versus placebo. Although no association was observed between B-cell counts at time of attack and NMOSD activity, depth of B-cell depletion after the first dosing period correlated with clinical outcomes. All participants receiving inebilizumab demonstrated a robust long-term therapeutic response, and participants with =4 cells/µL after the first 6-month dosing interval had persistently deeper B-cell depletion, lower annualised attack rates (estimated rate [95% CI]: 0.034 [0.024–0.04] vs 0.086 [0.056–0.12]; p = 0.045), fewer new/enlarging T2 MRI lesions (0.49 [0.43–0.56] vs 1.36 [1.12–1.61]; p < 0.0001), and a trend towards decreased Expanded Disability Status Scale worsening (0.076 [0.06–0.10] vs 0.14 [0.10–0.18]; p = 0.093). Antibodies to inebilizumab, although present in a proportion of treated participants, did not alter outcomes. INTERPRETATION: This analysis suggests that compared with placebo, inebilizumab can provide specific, rapid, and durable depletion of B cells in participants with NMOSD. Although deep and persistent CD20+ B-cell depletion correlates with long-term clinical stability, early, deep B-cell depletion correlates with improved disease activity metrics in the first 2 years

    Changes of Biochemical Components Contents and Gene Expression Profiles in Tissues of Litopenaeus vannamei During Spermatophore Regeneration

    Get PDF
    Spermatophore regeneration is an important biological process in Litopenaeus vannamei. In this study, changes of biochemical components contents during spermatophore regeneration showed that in hemolymph, the glucose content significantly increased from day 2 to day 8 and then decreased from day 10 to day 12; triglyceride (TG) and total cholesterol (TC) contents were relatively stable. In the hepatopancreas, glucose, and TG contents significantly decreased during regeneration; TC contents significantly increased at day 4 and then decreased. In the testes, glucose content significantly increased while TC content significantly decreased during whole stage; TG content at day 4 was highest. In terminal ampoule, changes of glucose and TC contents were similar, the contents at day 4 were highest; TG content at day 6 was significantly lower than day 2. During spermatophore regeneration, expression level of pyruvate kinase (PK) was significantly higher during day 2 to day 4 than at other times, and expression levels of three lipogenesis-related genes diacylglycerol O-acyltransferase homolog 1 (DGAT1), sterol regulatory element-binding protein 1 (SREBP1) and sterol O-acyltransferase 2 (SOAT2) were significantly higher during day 2 to day 8 than at other times. The results indicated that the hepatopancreas could be the energy source that provides glucose and TG; glucose, TG, and TC play important roles in spermatophore regeneratio

    Single-index regression for pooled biomarker data

    No full text

    Segregation-induced low-dimensional surface structures in oxide semiconductors

    No full text
    Nanomaterials have been commonly considered in tenns ofnano~size solids, which exhibit different shapes and sizes. It has been shown that the properties of the nano-size solids depend profoundly on their shapes and sizes. The related morphology is dete1mined by the applied experimental procedures. Therefore, the nano-size solids with reproducible properties may be achieved when the applied processing procedures are reproducible. This appears to be difficult

    Highly efficient 2 μm Tm:YAG ceramic laser

    No full text
    We have experimentally demonstrated a highly efficient diode-pumped Tm:YAG ceramic laser operating at 2 μm wavelength. The maximum output power of 6.05 W was realized with a slope efficiency as high as 65%. As far as we know, it is the highest slope efficiency reported for Tm:YAG ceramic laser. The wavelength tuning experiment of Tm:YAG ceramic laser was carried out and the results suggest that Tm:YAG ceramic laser could operate simultaneously at multiple wavelengths in a wide range of 1884–2017 nm.Published versio
    corecore