950 research outputs found

    A general wavelet-based profile decomposition in the critical embedding of function spaces

    Get PDF
    We characterize the lack of compactness in the critical embedding of functions spaces XYX\subset Y having similar scaling properties in the following terms : a sequence (un)n0(u_n)_{n\geq 0} bounded in XX has a subsequence that can be expressed as a finite sum of translations and dilations of functions (ϕl)l>0(\phi_l)_{l>0} such that the remainder converges to zero in YY as the number of functions in the sum and nn tend to ++\infty. Such a decomposition was established by G\'erard for the embedding of the homogeneous Sobolev space X=H˙sX=\dot H^s into the Y=LpY=L^p in dd dimensions with 0<s=d/2d/p0<s=d/2-d/p, and then generalized by Jaffard to the case where XX is a Riesz potential space, using wavelet expansions. In this paper, we revisit the wavelet-based profile decomposition, in order to treat a larger range of examples of critical embedding in a hopefully simplified way. In particular we identify two generic properties on the spaces XX and YY that are of key use in building the profile decomposition. These properties may then easily be checked for typical choices of XX and YY satisfying critical embedding properties. These includes Sobolev, Besov, Triebel-Lizorkin, Lorentz, H\"older and BMO spaces.Comment: 24 page

    Conditioning bounds for traveltime tomography in layered media

    Get PDF
    This paper revisits the problem of recovering a smooth, isotropic, layered wave speed profile from surface traveltime information. While it is classic knowledge that the diving (refracted) rays classically determine the wave speed in a weakly well-posed fashion via the Abel transform, we show in this paper that traveltimes of reflected rays do not contain enough information to recover the medium in a well-posed manner, regardless of the discretization. The counterpart of the Abel transform in the case of reflected rays is a Fredholm kernel of the first kind which is shown to have singular values that decay at least root-exponentially. Kinematically equivalent media are characterized in terms of a sequence of matching moments. This severe conditioning issue comes on top of the well-known rearrangement ambiguity due to low velocity zones. Numerical experiments in an ideal scenario show that a waveform-based model inversion code fits data accurately while converging to the wrong wave speed profile

    Topological Evolution of a Fast Magnetic Breakout CME in 3-Dimensions

    Get PDF
    W present the extension of the magnetic breakout model for CME initiation to a fully 3-dimensional, spherical geometry. Given the increased complexity of the dynamic magnetic field interactions in 3-dimensions, we first present a summary of the well known axisymmetric breakout scenario in terms of the topological evolution associated with the various phases of the eruptive process. In this context, we discuss the completely analogous topological evolution during the magnetic breakout CME initiation process in the simplest 3-dimensional multipolar system. We show that an extended bipolar active region embedded in an oppositely directed background dipole field has all the necessary topological features required for magnetic breakout, i.e. a fan separatrix surface between the two distinct flux systems, a pair of spine fieldlines, and a true 3-dimensional coronal null point at their intersection. We then present the results of a numerical MHD simulation of this 3-dimensional system where boundary shearing flows introduce free magnetic energy, eventually leading to a fast magnetic breakout CME. The eruptive flare reconnection facilitates the rapid conversion of this stored free magnetic energy into kinetic energy and the associated acceleration causes the erupting field and plasma structure to reach an asymptotic eruption velocity of greater than or approx. equal to 1100 km/s over an approx.15 minute time period. The simulation results are discussed using the topological insight developed to interpret the various phases of the eruption and the complex, dynamic, and interacting magnetic field structures

    Sparse Deterministic Approximation of Bayesian Inverse Problems

    Get PDF
    We present a parametric deterministic formulation of Bayesian inverse problems with input parameter from infinite dimensional, separable Banach spaces. In this formulation, the forward problems are parametric, deterministic elliptic partial differential equations, and the inverse problem is to determine the unknown, parametric deterministic coefficients from noisy observations comprising linear functionals of the solution. We prove a generalized polynomial chaos representation of the posterior density with respect to the prior measure, given noisy observational data. We analyze the sparsity of the posterior density in terms of the summability of the input data's coefficient sequence. To this end, we estimate the fluctuations in the prior. We exhibit sufficient conditions on the prior model in order for approximations of the posterior density to converge at a given algebraic rate, in terms of the number NN of unknowns appearing in the parameteric representation of the prior measure. Similar sparsity and approximation results are also exhibited for the solution and covariance of the elliptic partial differential equation under the posterior. These results then form the basis for efficient uncertainty quantification, in the presence of data with noise

    Sparsity and Incoherence in Compressive Sampling

    Get PDF
    We consider the problem of reconstructing a sparse signal x0Rnx^0\in\R^n from a limited number of linear measurements. Given mm randomly selected samples of Ux0U x^0, where UU is an orthonormal matrix, we show that 1\ell_1 minimization recovers x0x^0 exactly when the number of measurements exceeds mConstμ2(U)Slogn, m\geq \mathrm{Const}\cdot\mu^2(U)\cdot S\cdot\log n, where SS is the number of nonzero components in x0x^0, and μ\mu is the largest entry in UU properly normalized: μ(U)=nmaxk,jUk,j\mu(U) = \sqrt{n} \cdot \max_{k,j} |U_{k,j}|. The smaller μ\mu, the fewer samples needed. The result holds for ``most'' sparse signals x0x^0 supported on a fixed (but arbitrary) set TT. Given TT, if the sign of x0x^0 for each nonzero entry on TT and the observed values of Ux0Ux^0 are drawn at random, the signal is recovered with overwhelming probability. Moreover, there is a sense in which this is nearly optimal since any method succeeding with the same probability would require just about this many samples

    Efficient Resolution of Anisotropic Structures

    Get PDF
    We highlight some recent new delevelopments concerning the sparse representation of possibly high-dimensional functions exhibiting strong anisotropic features and low regularity in isotropic Sobolev or Besov scales. Specifically, we focus on the solution of transport equations which exhibit propagation of singularities where, additionally, high-dimensionality enters when the convection field, and hence the solutions, depend on parameters varying over some compact set. Important constituents of our approach are directionally adaptive discretization concepts motivated by compactly supported shearlet systems, and well-conditioned stable variational formulations that support trial spaces with anisotropic refinements with arbitrary directionalities. We prove that they provide tight error-residual relations which are used to contrive rigorously founded adaptive refinement schemes which converge in L2L_2. Moreover, in the context of parameter dependent problems we discuss two approaches serving different purposes and working under different regularity assumptions. For frequent query problems, making essential use of the novel well-conditioned variational formulations, a new Reduced Basis Method is outlined which exhibits a certain rate-optimal performance for indefinite, unsymmetric or singularly perturbed problems. For the radiative transfer problem with scattering a sparse tensor method is presented which mitigates or even overcomes the curse of dimensionality under suitable (so far still isotropic) regularity assumptions. Numerical examples for both methods illustrate the theoretical findings

    Current and Emerging Pharmacotherapies for the Treatment of Relapsed Small Cell Lung Cancer

    Get PDF
    Small cell lung cancer (SCLC) is a very aggressive cancer with poor outcome if left untreated, but it is also one of the most chemotherapy responsive cancers. Overall it has a very poor prognosis especially if it is chemotherapy resistant to first line treatment. Second line chemotherapy has not been very beneficial in SCLC as opposed to breast cancer and lymphoma. In the last few years topotecan is the only drug that has been approved by the food and drug administration (FDA) for the second line treatment of SCLC but in Japan another drug, amrubicin is approved. There are many combinations of different chemotherapies available in moderate to high intensity, in this difficult to treat patient to overcome the chemo resistance, but many of these studies are small or phase II trials. In this article we have reviewed single agent and multidrug regimens that were studied in both chemo sensitive and refractory setting, including the most recent clinical trials

    Detonation Initiation via Imploding Shock Waves

    Get PDF
    An imploding annular shock wave driven by a jet of air was used to initiate detonations inside a 76 mm diameter tube. The tube was filled with a test gas composed of either stoichiometric ethylene-oxygen or propane-oxygen diluted with nitrogen. The strength of the imploding shock wave and the sensitivity of the test gas were varied in an effort to find the minimum shock strength required for detonation of each test mixture. The results show that the minimum required shock strength increases with mixture sensitivity and suggest that impractically large shock driver pressures are required to initiate detonations in ethylene-air or propane-air mixtures when using this technique
    corecore