202 research outputs found

    Participation and satisfaction after spinal cord injury: results of a vocational and leisure outcome study

    Get PDF
    Study design: Survey. Objectives: Insight in (1) the changes in participation in vocational and leisure activities and (2) satisfaction with the current participation level of people with spinal cord injuries (SCIs) after reintegration in society. Design: Descriptive analysis of data from a questionnaire. Setting: Rehabilitation centre with special department for patients with SCIs, Groningen, The Netherlands. Subjects: A total of 57 patients with traumatic SCI living in the community, who were admitted to the rehabilitation centre two to 12 years before the current assessment. Main outcome measures: Changes in participation in activities; current life satisfaction; support and unmet needs. Results: Participation expressed in terms of hours spent on vocational and leisure activities changed to a great extent after the SCI. This was mainly determined by a large reduction of hours spent on paid work. While 60% of the respondents successfully reintegrated in work, many changes took place in the type and extent of the job. Loss of work was partially compensated with domestic and leisure activities. Sports activities were reduced substantially. The change in participation level and compensation for the lost working hours was not significantly associated with the level of SCI-specific health problems and disabilities. As was found in other studies, most respondents were satisfied with their lives. Determinants of a negative life satisfaction several years following SCI were not easily indicated. Reduced quality of life was particularly related to an unsatisfactory work and leisure situation. Conclusions: Most people with SCI in this study group were able to resume work and were satisfied with their work and leisure situation

    Epidemiology of traumatic spinal cord injury in Galicia, Spain: trends over a 20-year period

    Get PDF
    [Abstract] Study design: Observational study with prospective and retrospective monitoring. Objective: To describe the epidemiological and demographic characteristics of traumatic spinal cord injury (TSCI), and to analyze its epidemiological changes. Setting: Unidad de Lesionados Medulares, Complejo Hospitalario Universitario A Coruña, in Galicia (Spain). Methods: The study included patients with TSCI who had been hospitalized between January 1995 and December 2014. Relevant data were extracted from the admissions registry and electronic health record. Results: A total of 1195 patients with TSCI were admitted over the specified period of time; 76.4% male and 23.6% female. Mean patient age at injury was 50.20 years. Causes of injury were falls (54.2%), traffic accidents (37%), sports/leisure-related accidents (3.5%) and other traumatic causes (5.3%). Mean patient age increased significantly over time (from 46.40 to 56.54 years), and the number of cases of TSCI related to traffic accidents decreased (from 44.5% to 23.7%), whereas those linked to falls increased (from 46.9% to 65.6%). The most commonly affected neurological level was the cervical level (54.9%), increasing in the case of levels C1–C4 over time, and the most frequent ASIA (American Spinal Injury Association) grade was A (44.3%). The crude annual incidence rate was 2.17/100 000 inhabitants, decreasing significantly over time at an annual percentage rate change of −1.4%. Conclusions: The incidence rate of TSCI tends to decline progressively. Mean patient age has increased over time and cervical levels C1–C4 are currently the most commonly affected ones. These epidemiological changes will eventually result in adjustments in the standard model of care for TSCI

    Quantification of the effects of an alpha-2 adrenergic agonist on reflex properties in spinal cord injury using a system identification technique

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Despite numerous investigations, the impact of tizanidine, an anti-spastic medication, on changes in reflex and muscle mechanical properties in spasticity remains unclear. This study was designed to help us understand the mechanisms of action of tizanidine on spasticity in spinal cord injured subjects with incomplete injury, by quantifying the effects of a single dose of tizanidine on ankle muscle intrinsic and reflex components.</p> <p>Methods</p> <p>A series of perturbations was applied to the spastic ankle joint of twenty-one spinal cord injured subjects, and the resulting torques were recorded. A parallel-cascade system identification method was used to separate intrinsic and reflex torques, and to identify the contribution of these components to dynamic ankle stiffness at different ankle positions, while subjects remained relaxed.</p> <p>Results</p> <p>Following administration of a single oral dose of Tizanidine, stretch evoked joint torque at the ankle decreased significantly (p < 0.001) The peak-torque was reduced between 15% and 60% among the spinal cord injured subjects, and the average reduction was 25%. Using systems identification techniques, we found that this reduced torque could be attributed largely to a reduced reflex response, without measurable change in the muscle contribution. Reflex stiffness decreased significantly across a range of joint angles (p < 0.001) after using tizanidine. In contrast, there were no significant changes in intrinsic muscle stiffness after the administration of tizanidine.</p> <p>Conclusions</p> <p>Our findings demonstrate that tizanidine acts to reduce reflex mechanical responses substantially, without inducing comparable changes in intrinsic muscle properties in individuals with spinal cord injury. Thus, the pre-post difference in joint mechanical properties can be attributed to reflex changes alone. From a practical standpoint, use of a single "test" dose of Tizanidine may help clinicians decide whether the drug can helpful in controlling symptoms in particular subjects.</p

    Epidemiology and predictors of spinal injury in adult major trauma patients: European cohort study

    Get PDF
    This is a European cohort study on predictors of spinal injury in adult (≥16 years) major trauma patients, using prospectively collected data of the Trauma Audit and Research Network from 1988 to 2009. Predictors for spinal fractures/dislocations or spinal cord injury were determined using univariate and multivariate logistic regression analysis. 250,584 patients were analysed. 24,000 patients (9.6%) sustained spinal fractures/dislocations alone and 4,489 (1.8%) sustained spinal cord injury with or without fractures/dislocations. Spinal injury patients had a median age of 44.5 years (IQR = 28.8–64.0) and Injury Severity Score of 9 (IQR = 4–17). 64.9% were male. 45% of patients suffered associated injuries to other body regions. Age <45 years (≥45 years OR 0.83–0.94), Glasgow Coma Score (GCS) 3–8 (OR 1.10, 95% CI 1.02–1.19), falls >2 m (OR 4.17, 95% CI 3.98–4.37), sports injuries (OR 2.79, 95% CI 2.41–3.23) and road traffic collisions (RTCs) (OR 1.91, 95% CI 1.83–2.00) were predictors for spinal fractures/dislocations. Age <45 years (≥45 years OR 0.78–0.90), male gender (female OR 0.78, 95% CI 0.72–0.85), GCS <15 (OR 1.36–1.93), associated chest injury (OR 1.10, 95% CI 1.01–1.20), sports injuries (OR 3.98, 95% CI 3.04–5.21), falls >2 m (OR 3.60, 95% CI 3.21–4.04), RTCs (OR 2.20, 95% CI 1.96–2.46) and shooting (OR 1.91, 95% CI 1.21–3.00) were predictors for spinal cord injury. Multilevel injury was found in 10.4% of fractures/dislocations and in 1.3% of cord injury patients. As spinal trauma occurred in >10% of major trauma patients, aggressive evaluation of the spine is warranted, especially, in males, patients <45 years, with a GCS <15, concomitant chest injury and/or dangerous injury mechanisms (falls >2 m, sports injuries, RTCs and shooting). Diagnostic imaging of the whole spine and a diligent search for associated injuries are substantial

    A Mutation in the Gene Encoding Mitochondrial Mg2+ Channel MRS2 Results in Demyelination in the Rat

    Get PDF
    The rat demyelination (dmy) mutation serves as a unique model system to investigate the maintenance of myelin, because it provokes severe myelin breakdown in the central nervous system (CNS) after normal postnatal completion of myelination. Here, we report the molecular characterization of this mutation and discuss the possible pathomechanisms underlying demyelination. By positional cloning, we found that a G-to-A transition, 177 bp downstream of exon 3 of the Mrs2 (MRS2 magnesium homeostasis factor (Saccharomyces cerevisiae)) gene, generated a novel splice acceptor site which resulted in functional inactivation of the mutant allele. Transgenic rescue with wild-type Mrs2-cDNA validated our findings. Mrs2 encodes an essential component of the major Mg2+ influx system in mitochondria of yeast as well as human cells. We showed that the dmy/dmy rats have major mitochondrial deficits with a markedly elevated lactic acid concentration in the cerebrospinal fluid, a 60% reduction in ATP, and increased numbers of mitochondria in the swollen cytoplasm of oligodendrocytes. MRS2-GFP recombinant BAC transgenic rats showed that MRS2 was dominantly expressed in neurons rather than oligodendrocytes and was ultrastructurally observed in the inner membrane of mitochondria. Our observations led to the conclusion that dmy/dmy rats suffer from a mitochondrial disease and that the maintenance of myelin has a different mechanism from its initial production. They also established that Mg2+ homeostasis in CNS mitochondria is essential for the maintenance of myelin

    Differential utilization of ketone bodies by neurons and glioma cell lines: a rationale for ketogenic diet as experimental glioma therapy

    Get PDF
    Background: Even in the presence of oxygen, malignant cells often highly depend on glycolysis for energy generation, a phenomenon known as the Warburg effect. One strategy targeting this metabolic phenotype is glucose restriction by administration of a high-fat, low-carbohydrate (ketogenic) diet. Under these conditions, ketone bodies are generated serving as an important energy source at least for non-transformed cells. Methods: To investigate whether a ketogenic diet might selectively impair energy metabolism in tumor cells, we characterized in vitro effects of the principle ketone body 3-hydroxybutyrate in rat hippocampal neurons and five glioma cell lines. In vivo, a non-calorie-restricted ketogenic diet was examined in an orthotopic xenograft glioma mouse model. Results: The ketone body metabolizing enzymes 3-hydroxybutyrate dehydrogenase 1 and 2 (BDH1 and 2), 3-oxoacid-CoA transferase 1 (OXCT1) and acetyl-CoA acetyltransferase 1 (ACAT1) were expressed at the mRNA and protein level in all glioma cell lines. However, no activation of the hypoxia-inducible factor-1alpha (HIF-1alpha) pathway was observed in glioma cells, consistent with the absence of substantial 3-hydroxybutyrate metabolism and subsequent accumulation of succinate. Further, 3-hydroxybutyrate rescued hippocampal neurons from glucose withdrawal-induced cell death but did not protect glioma cell lines. In hypoxia, mRNA expression of OXCT1, ACAT1, BDH1 and 2 was downregulated. In vivo, the ketogenic diet led to a robust increase of blood 3-hydroxybutyrate, but did not alter blood glucose levels or improve survival. Conclusion: In summary, glioma cells are incapable of compensating for glucose restriction by metabolizing ketone bodies in vitro, suggesting a potential disadvantage of tumor cells compared to normal cells under a carbohydrate-restricted ketogenic diet. Further investigations are necessary to identify co-treatment modalities, e.g. glycolysis inhibitors or antiangiogenic agents that efficiently target non-oxidative pathways

    Ecological forecasting—21st century science for 21st century management

    Full text link
    Natural resource managers are coping with rapid changes in both environmental conditions and ecosystems. Enabled by recent advances in data collection and assimilation, short-term ecological forecasting may be a powerful tool to help resource managers anticipate impending near-term changes in ecosystem conditions or dynamics. Managers may use the information in forecasts to minimize the adverse effects of ecological stressors and optimize the effectiveness of management actions. To explore the potential for ecological forecasting to enhance natural resource management, the U.S. Geological Survey (USGS) convened a workshop titled "Building Capacity for Applied Short-Term Ecological Forecasting" on May 29—31, 2019, with participants from several Federal agencies, including the Bureau of Land Management, the U.S. Fish and Wildlife Service, the National Park Service, and the National Oceanic and Atmospheric Administration as well as all mission areas within the USGS. Participants broadly agreed that short-term ecological forecasting—on the order of days to years into the future—has tremendous potential to improve the quality and timeliness of information available to guide resource management decisions. Participants considered how ecological forecasting could directly affect their agency missions and specified numerous critical tools for addressing natural resource management concerns in the 21st century that could be enhanced by ecological forecasting. Given this breadth of possible applications for forecast products, participants developed a repeatable framework for evaluating potential value of a forecast product for enhancing resource management. Applying that process to a large list of forecast ideas that were developed in a brainstorming session, participants identified a small set of promising forecast products that illustrate the value of ecological forecasting for informing resource management. Workshop outcomes also include insights about important likely obstacles and next steps. In particular, reliable production and delivery of operational ecological forecasts will require a sustained commitment by research agencies, in partnership with resource management agencies, to maintain and improve forecasting tools and capabilities.https://pubs.er.usgs.gov/publication/ofr2020107
    corecore