78 research outputs found

    Reply to the Editor:

    Get PDF

    Bicuspid aortic valve formation: Nos3 mutation leads to abnormal lineage patterning of neural crest cells and the second heart field

    Get PDF
    The bicuspid aortic valve (BAV), a valve with two instead of three aortic leaflets, belongs to the most prevalent congenital heart diseases in the world, occurring in 0.5-2% of the general population. We aimed to understand how changes in early cellular contributions result in BAV formation and impact cardiovascular outflow tract development. Detailed 3D reconstructions, immunohistochemistry and morphometrics determined that, during valvulogenesis, the non-coronary leaflet separates from the parietal outflow tract cushion instead of originating from an intercalated cushion. Nos3−/− mice develop a BAV without a raphe as a result of incomplete separation of the parietal outflow tract cushion into the right and non-coronary leaflet. Genetic lineage tracing of endothelial, second heart field and neural crest cells revealed altered deposition of neural crest cells and second heart field cells within the parietal outflow tract cushion of Nos3−/− embryos. The abnormal cell lineage distributions also affected the positioning of the aortic and pulmonary valves at the orifice level. The results demonstrate that the development of the right and non-coronary leaflets are closely related. A small deviation in the distribution of neural crest and second heart field populations affects normal valve formation and results in the predominant right-non-type BAV in Nos3−/− mice

    Evidence for the presence of synovial sheaths surrounding the extensor tendons at the metacarpophalangeal joints:a microscopy study

    Get PDF
    MRI-detected inflammation around the extensor tendons of metacarpophalangeal (MCP-) joints is prevalent in RA and poses a markedly increased risk of RA development when present in arthralgia patients. Such inflammation is called ‘peritendinitis’ since anatomy literature reports no presence of a tenosynovial sheath at these tendons. However, the presence or absence of tenosynovium at these extensor tendons has never been studied. Therefore, an anatomical and histological study of extensor tendons at the MCP-joints of three embalmed human hands was performed. Immunohistochemical staining showed the presence of markers for synovial macrophages and fibroblast-like synoviocytes bordering a natural dorsal space next to the extensor tendon, suggesting the presence of a synovial lining. This implies that contrast-enhancement on MRI around extensor tendons at MCP-joints observed in early RA and pre-RA likely represents tenosynovitis and that inflammation of this synovial tissue is an early feature of RA.</p

    Transition of healthy to diseased synovial tissue in rheumatoid arthritis is associated with gain of mesenchymal/fibrotic characteristics

    Get PDF
    The healthy synovial lining layer consists of a single cell layer that regulates the transport between the joint cavity and the surrounding tissue. It has been suggested that abnormalities such as somatic mutations in the p53 tumor-suppressor gene contribute to synovial hyperplasia and invasion in rheumatoid arthritis (RA). In this study, expression of epithelial markers on healthy and diseased synovial lining tissue was examined. In addition, we investigated whether a regulated process, resembling epithelial to mesenchymal transition (EMT)/fibrosis, could be responsible for the altered phenotype of the synovial lining layer in RA. Synovial tissue from healthy subjects and RA patients was obtained during arthroscopy. To detect signs of EMT, expression of E-cadherin (epithelial marker), collagen type IV (indicator of the presence of a basement membrane) and α-smooth muscle actin (α-sma; a myofibroblast marker) was investigated on frozen tissue sections using immunohistochemistry. Fibroblast-like synoviocytes (FLSs) from healthy subjects were isolated and subjected to stimulation with synovial fluid (SF) from two RA patients and to transforming growth factor (TGF)-β. To detect whether EMT/fibrotic markers were increased, expression of collagen type I, α-sma and telopeptide lysylhydroxylase (TLH) was measured by real time PCR. Expression of E-cadherin and collagen type IV was found in healthy and arthritic synovial tissue. Expression of α-sma was only found in the synovial lining layer of RA patients. Stimulation of healthy FLSs with SF resulted in an upregulation of α-sma and TLH mRNA. Collagen type I and TLH mRNA were upregulated after stimulation with TGF-β. Addition of bone morphogenetic protein (BMP)-7 to healthy FLS stimulated with SF inhibited the expression of α-sma mRNA. The finding that E-cadherin and collagen type IV are expressed in the lining layer of healthy and arthritic synovium indicates that these lining cells display an epithelial-like phenotype. In addition, the presence of α-sma in the synovial lining layer of RA patients and induction of fibrotic markers in healthy FLSs by SF from RA patients indicate that a regulated process comparable to EMT might cause the alteration in phenotype of RA FLSs. Therefore, BMP-7 may represent a promising agent to counteract the transition imposed on synoviocytes in the RA joint

    Differential Temporal and Spatial Progerin Expression during Closure of the Ductus Arteriosus in Neonates

    Get PDF
    Closure of the ductus arteriosus (DA) at birth is essential for the transition from fetal to postnatal life. Before birth the DA bypasses the uninflated lungs by shunting blood from the pulmonary trunk into the systemic circulation. The molecular mechanism underlying DA closure and degeneration has not been fully elucidated, but is associated with apoptosis and cytolytic necrosis in the inner media and intima. We detected features of histology during DA degeneration that are comparable to Hutchinson Gilford Progeria syndrome and ageing. Immunohistochemistry on human fetal and neonatal DA, and aorta showed that lamin A/C was expressed in all layers of the vessel wall. As a novel finding we report that progerin, a splicing variant of lamin A/C was expressed almost selectively in the normal closing neonatal DA, from which we hypothesized that progerin is involved in DA closure. Progerin was detected in 16.2%±7.2 cells of the DA. Progerin-expressing cells were predominantly located in intima and inner media where cytolytic necrosis accompanied by apoptosis will develop. Concomitantly we found loss of α-smooth muscle actin as well as reduced lamin A/C expression compared to the fetal and non-closing DA. In cells of the adjacent aorta, that remains patent, progerin expression was only sporadically detected in 2.5%±1.5 of the cells. Data were substantiated by the detection of mRNA of progerin in the neonatal DA but not in the aorta, by PCR and sequencing analysis. The fetal DA and the non-closing persistent DA did not present with progerin expressing cells. Our analysis revealed that the spatiotemporal expression of lamin A/C and progerin in the neonatal DA was mutually exclusive. We suggest that activation of LMNA alternative splicing is involved in vascular remodeling in the circulatory system during normal neonatal DA closure

    Coding of coronary arterial origin and branching in congenital heart disease: The modified Leiden Convention

    Get PDF
    Objectives: Variations in coronary anatomy are common and may relate to the position of the coronary ostium relative to the aortic sinus, the angle of coronary take-off, or the course of the coronary arterial branches. Several classification systems have been proposed. However, they all lack a simple rationale that is applicable irrespective of the relative position of the great arteries, as well as in bicuspid aortic valves. We present a modification of a relatively simple system introduced in the early 1980s, designated the “Leiden Convention.” Methods: The first step of the Leiden Convention is that the clinician takes position in the nonfacing sinus of the aorta looking toward the pulmonary orifice. The right-hand facing sinus is sinus 1, and the left-hand facing sinus is sinus 2. The coronary branches arising from sinus 1 are annotated proceeding in a counterclockwise fashion toward sinus 2. “Usual” (normal) coronary anatomy would be 1R-2LCx. Given their clinical relevance, single sinus coronary arteries are discussed separately. Results: This system was originally designed and highly applicable in hearts with an altered great artery relationship, such as in the var

    The anatomical components of urinary continence

    No full text
    BACKGROUND: The levator ani muscle (LAM) plays an important role in urinary continence, but the anatomical relationship between this pelvic floor muscle and the external urethral sphincter (EUS) remains incompletely understood. OBJECTIVE: To investigate the topographical relationship between the EUS and the LAM. DESIGN, SETTING, AND PARTICIPANTS: Serially sectioned and histochemically stained foetal pelves from eleven females and nine males (10-27 wk of gestation) were studied. Three foetal pelves (two female, 12 and 18 wk of gestation; one male, 12 wk of gestation) and three adult pelves (two females, 54 and 85 yr; one male, 75 yr) were stained immunohistochemically for the presence of striated and smooth muscle tissue. Three-dimensional reconstructions were prepared. MEASUREMENTS: Anatomy of the LAM and urethral sphincter components was evaluated qualitatively. RESULTS AND LIMITATIONS: The EUS has no direct bony attachment. In female foetuses, the inferior part of the EUS is firmly attached to the LAM by a tendinous connection. Contraction of this part of the EUS produces a force on the urethra in a posteroinferior direction. Contraction of the LAM compresses the rectum and moves the rectovaginal complex anteriorly and superiorly towards the urethra in a plane that lies parallel to, but superior of, that of the EUS. Simultaneous contraction of the LAM and EUS causes an anteriorly convex bend in the midurethra, which closes the midurethral lumen. A similar attachment of the EUS to the LAM is absent in the male. Our study is limited due to the absence of young adult study specimens. CONCLUSIONS: The EUS in females is anchored to the levator ani muscle via a tendinous connection. Because of this attachment to the LAM, proper function of the EUS is dependent on the integrity of the LAM and its attachment to the pelvic wal

    Thoracic Aortic Aneurysm Development in Patients with Bicuspid Aortic Valve: What Is the Role of Endothelial Cells?

    Get PDF
    Bicuspid aortic valve (BAV) is the most common type of congenital cardiac malformation. Patients with a BAV have a predisposition for the development of thoracic aortic aneurysm (TAA). This pathological aortic dilation may result in aortic rupture, which is fatal in most cases. The abnormal aortic morphology of TAAs results from a complex series of events that alter the cellular structure and extracellular matrix (ECM) composition of the aortic wall. Because the major degeneration is located in the media of the aorta, most studies aim to unravel impaired smooth muscle cell (SMC) function in BAV TAA. However, recent studies suggest that endothelial cells play a key role in both the initiation and progression of TAAs by influencing the medial layer. Aortic endothelial cells are activated in BAV mediated TAAs and have a substantial influence on ECM composition and SMC phenotype, by secreting several key growth factors and matrix modulating enzymes. In recent years there have been significant advances in the genetic and molecular understanding of endothelial cells in BAV associated TAAs. In this review, the involvement of the endothelial cells in BAV TAA pathogenesis is discussed. Endothelial cell functioning in vessel homeostasis, flow response and signaling will be highlighted to give an overview of the importance and the under investigated potential of endothelial cells in BAV-associated TAA

    VarVis:visualizing anatomical variation in branching structures

    No full text
    Anatomical variations are naturally-occurring deviations from typical human anatomy. While these variations are considered normal and non-pathological, they are still of interest in clinical practice for medical specialists such as radiologists and transplantation surgeons. The complex variations in branching structures, for instance in arteries or nerves, are currently visualized side-by-side in illustrations or expressed using plain text in medical publications. In this work, we present a novel way of visualizing anatomical variations in complex branching structures for educational purposes: VarVis. VarVis consists of several linked views that reveal global and local similarities and differences in the variations. We propose a novel graph representation to provide an overview of the topological changes. Our solution involves a topolog-ical similarity measure, which allows the user to select variations at a global level based on their degree of similarity. After a selection is made, local topological differences can be interactively explored using illustrations and topology graphs. We also incorporate additional information regarding the probability of the various cases. Our solution has several advantages over traditional approaches, which we demonstrate in an evaluation
    corecore