32 research outputs found

    A model for standardizing manipulation terminology in physical therapy practice

    Get PDF
    Research supporting the efficacy of manual therapy, manipulation in particular, is growing. The ability to communicate clearly and accurately regarding this important intervention, regardless of region or background, is essential if clinicians are to incorporate this research in clinical practice. In February 2007, the American Academy of Orthopaedic Manual Physical Therapists formed a task force to standardize manual therapy terminology, starting with the intervention of manipulation. The ultimate goal of this task force was to create a template that has the potential to be used internationally by the community of physical therapists in order to standardize manual therapy nomenclature. The following document reflects the work and recommendations of this task force

    CityLab at Boston University – thirty years of innovation and partnerships

    Get PDF
    Boston University’s (BU) CityLab program was created in 1991 as a partnership between faculty membersof BU’s School of Medicine and School of Education in response to the first call for proposals under the Science Education Partnership Awards initiative of the National Institutes of Health. CityLab’s founders recognized the need for CityLab, a centrally-located facility for pre-college teachers and students to explore the burgeoning world of biotechnology. The mis-sion has always been to share the excitement of science with students and teachers by engaging them in hands-on laboratory experiences, thereby fostering the development of a robust pool of scientists and physicians and a scientifically-literate popu-lace. In order to reach more schools, particularly those that could not come to CityLab’s facility in Boston, the CityLab team pioneered the mobile science laboratory concept with the launch of its MobileLab in 1998. Both CityLab and MobileLab have been replicated in the U.S. and abroad. CityLab has sustained itself because it has benefited from stable leadership, built and disseminated models for hands-on STEM education, embraced innovation by creating new programs to serve additional populations, and developed diverse funding streams. The CityLab program has been remarkable in its outreach, success, and longevity.https://www.jstemoutreach.org/article/14514-citylab-at-boston-university-thirty-years-of-innovation-and-partnershipshttps://www.jstemoutreach.org/article/14514-citylab-at-boston-university-thirty-years-of-innovation-and-partnershipsPublished versio

    Implications of Different Solar Photospheric Flux-Transport Models for Global Coronal and Heliospheric Modeling

    Full text link
    The concept of surface-flux transport (SFT) is commonly used in evolving models of the large-scale solar surface magnetic field. These photospheric models are used to determine the large-scale structure of the overlying coronal magnetic field, as well as to make predictions about the fields and flows that structure the solar wind. We compare predictions from two SFT models for the solar wind, open magnetic field footpoints, and the presence of coronal magnetic null points throughout various phases of a solar activity cycle, focusing on the months of April in even-numbered years between 2012 and 2020, inclusive. We find that there is a solar cycle dependence to each of the metrics considered, but there is not a single phase of the cycle in which all the metrics indicate good agreement between the models. The metrics also reveal large, transient differences between the models when a new active region is rotating into the assimilation window. The evolution of the surface flux is governed by a combination of large scale flows and comparatively small scale motions associated with convection. Because the latter flows evolve rapidly, there are intervals during which their impact on the surface flux can only be characterized in a statistical sense, thus their impact is modeled by introducing a random evolution that reproduces the typical surface flux evolution. We find that the differences between the predicted properties are dominated by differences in the model assumptions and implementation, rather than selection of a particular realization of the random evolution.Comment: Accepted for publication in The Astrophysical Journa

    Observation of Parametric Instability in Advanced LIGO

    Get PDF
    Parametric instabilities have long been studied as a potentially limiting effect in high-power interferometric gravitational wave detectors. Until now, however, these instabilities have never been observed in a kilometer-scale interferometer. In this work we describe the first observation of parametric instability in an Advanced LIGO detector, and the means by which it has been removed as a barrier to progress

    First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO

    Get PDF
    Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude

    A Model for Standardizing Manipulation Terminology in Physical Therapy Practice

    Get PDF
    Research supporting the efficacy of manual therapy, manipulation in particular, is growing. The ability to communicate clearly and accurately regarding this important intervention, regardless of region or background, is essential if clinicians are to incorporate this research in clinical practice. In February 2007, the American Academy of Orthopaedic Manual Physical Therapists formed a task force to standardize manual therapy terminology, starting with the intervention of manipulation. The ultimate goal of this task force was to create a template that has the potential to be used internationally by the community of physical therapists in order to standardize manual therapy nomenclature. The following document reflects the work and recommendations of this task force

    Moving Past Sleight of Hand

    No full text
    corecore