254 research outputs found
Spacecraft servicing demonstration plan
A preliminary spacecraft servicing demonstration plan is prepared which leads to a fully verified operational on-orbit servicing system based on the module exchange, refueling, and resupply technologies. The resulting system can be applied at the space station, in low Earth orbit with an orbital maneuvering vehicle (OMV), or be carried with an OMV to geosynchronous orbit by an orbital transfer vehicle. The three phase plan includes ground demonstrations, cargo bay demonstrations, and free flight verifications. The plan emphasizes the exchange of multimission modular spacecraft (MMS) modules which involves space repairable satellites. Three servicer mechanism configurations are the engineering test unit, a protoflight quality unit, and two fully operational units that have been qualified and documented for use in free flight verification activity. The plan balances costs and risks by overlapping study phases, utilizing existing equipment for ground demonstrations, maximizing use of existing MMS equipment, and rental of a spacecraft bus
State-space models' dirty little secrets: even simple linear Gaussian models can have estimation problems
State-space models (SSMs) are increasingly used in ecology to model
time-series such as animal movement paths and population dynamics. This type of
hierarchical model is often structured to account for two levels of
variability: biological stochasticity and measurement error. SSMs are flexible.
They can model linear and nonlinear processes using a variety of statistical
distributions. Recent ecological SSMs are often complex, with a large number of
parameters to estimate. Through a simulation study, we show that even simple
linear Gaussian SSMs can suffer from parameter- and state-estimation problems.
We demonstrate that these problems occur primarily when measurement error is
larger than biological stochasticity, the condition that often drives
ecologists to use SSMs. Using an animal movement example, we show how these
estimation problems can affect ecological inference. Biased parameter estimates
of a SSM describing the movement of polar bears (\textit{Ursus maritimus})
result in overestimating their energy expenditure. We suggest potential
solutions, but show that it often remains difficult to estimate parameters.
While SSMs are powerful tools, they can give misleading results and we urge
ecologists to assess whether the parameters can be estimated accurately before
drawing ecological conclusions from their results
Concept definition study for recovery of tumbling satellites. Volume 1: Executive summary, study results
The first assessment is made of the design requirements and conceptual definition of a front end kit to be transported on the currently defined Orbital Maneuvering Vehicle (OMV) and the Space Transportation System Shuttle Orbiter, to conduct remote, teleoperated recovery of disabled and noncontrollable, tumbling satellites. Previous studies did not quantify the dynamic characteristics of a tumbling satellite, nor did they appear to address the full spectrum of Tumbling Satellite Recovery systems requirements. Both of these aspects are investigated with useful results
Polar Bears Are Threatened by the Effects of Climate Change
The rapid warming of the Arctic caused by climate change is negatively affecting polar bears. This research proposes an accurate method of predicting polar bear population abundance under climate change. This will aid with proactive conservation measures.York's Knowledge Mobilization Unit provides services and funding for faculty, graduate students, and community organizations seeking to maximize the impact of academic research and expertise on public policy, social programming, and professional practice. It is supported by SSHRC and CIHR grants, and by the Office of the Vice-President Research & Innovation.
[email protected]
www.researchimpact.c
Concept definition study for recovery of tumbling satellites. Volume 2: Supporting research and technology report
A number of areas of research and laboratory experiments were identified which could lead to development of a cost efficient remote, disable satellite recovery system. Estimates were planned of disabled satellite motion. A concept is defined as a Tumbling Satellite Recovery kit which includes a modular system, composed of a number of subsystem mechanisms that can be readily integrated into varying combinations. This would enable the user to quickly configure a tailored remote, disabled satellite recovery kit to meet a broad spectrum of potential scenarios. The capability was determined of U.S. Earth based satellite tracking facilities to adequately determine the orientation and motion rates of disabled satellites
Integrated orbital servicing study for low-cost payload programs. Volume 2: Technical and cost analysis
Orbital maintenance concepts were examined in an effort to determine a cost effective orbital maintenance system compatible with the space transportation system. An on-orbit servicer maintenance system is recommended as the most cost effective system. A pivoting arm on-orbit servicer was selected and a preliminary design was prepared. It is indicated that orbital maintenance does not have any significant impact on the space transportation system
A 140 GHz pulsed EPR/212 MHz NMR spectrometer for DNP studies
We described a versatile spectrometer designed for the study of dynamic nuclear polarization (DNP) at low temperatures and high fields. The instrument functions both as an NMR spectrometer operating at 212 MHz ([superscript 1]H frequency) with DNP capabilities, and as a pulsed-EPR operating at 140 GHz. A coiled TE[subscript 011] resonator acts as both an NMR coil and microwave resonator, and a double balanced ([superscript 1]H, [superscript 13]C) radio frequency circuit greatly stabilizes the NMR performance. A new 140 GHz microwave bridge has also been developed, which utilizes a four-phase network and ELDOR channel at 8.75 GHz, that is then multiplied and mixed to obtain 140 GHz microwave pulses with an output power of 120 mW. Nutation frequencies obtained are as follows: 6 MHz on S = 1/2 electron spins, 100 kHz on [superscript 1]H, and 50 kHz on [superscript 13]C. We demonstrate basic EPR, ELDOR, ENDOR, and DNP experiments here. Our solid effect DNP results demonstrate an enhancement of 144 and sensitivity gain of 310 using OX063 trityl at 80 K and an enhancement of 157 and maximum sensitivity gain of 234 using Gd-DOTA at 20 K, which is significantly better performance than previously reported at high fields (⩾3 T).National Institutes of Health (U.S.) (EB002804)National Institutes of Health (U.S.) (EB002026)National Institutes of Health (U.S.) (EB001965)National Institutes of Health (U.S.) (EB004866)Deutsche Forschungsgemeinschaft (Postdoctoral Fellowship
Electric-field-induced alignment of electrically neutral disk-like particles: modelling and calculation
This work reveals a torque from electric field to electrically neutral flakes that are suspended in a higher electrical conductive matrix. The torque tends to rotate the particles toward an orientation with its long axis parallel to the electric current flow. The alignment enables the anisotropic properties of tiny particles to integrate together and generate desirable macroscale anisotropic properties. The torque was obtained from thermodynamic calculation of electric current free energy at various microstructure configurations. It is significant even when the electrical potential gradient becomes as low as 100 v/m. The changes of electrical, electroplastic and thermal properties during particles alignment were discussed
- …