514 research outputs found

    Novel method for detection of glycogen in cells

    Get PDF
    Glycogen, a branched polymer of glucose, functions as an energy reserve in many living organisms. Abnormalities in glycogen metabolism, usually excessive accumulation, can be caused genetically, most often through mutation of the enzymes directly involved in synthesis and degradation of the polymer leading to a variety of glycogen storage diseases (GSDs). Microscopic visualization of glycogen deposits in cells and tissues is important for the study of normal glycogen metabolism as well as diagnosis of GSDs. Here, we describe a method for the detection of glycogen using a renewable, recombinant protein which contains the carbohydrate-binding module (CBM) from starch-binding domain containing protein 1 (Stbd1). We generated a fusion protein containing g lutathione S-transferase, a cM c eptitope and the tbd1 BM (GYSC) for use as a glycogen-binding probe, which can be detected with secondary antibodies against glutathione S-transferase or cMyc. By enzyme-linked immunosorbent assay, we demonstrate that GYSC binds glycogen and two other polymers of glucose, amylopectin and amylose. Immunofluorescence staining of cultured cells indicate a GYSC-specific signal that is co-localized with signals obtained with anti-glycogen or anti-glycogen synthase antibodies. GYSC-positive staining inside of lysosomes is observed in individual muscle fibers isolated from mice deficient in lysosomal enzyme acid alpha-glucosidase, a well-characterized model of GSD II (Pompe disease). Co-localized GYSC and glycogen signals are also found in muscle fibers isolated from mice deficient in malin, a model for Lafora disease. These data indicate that GYSC is a novel probe that can be used to study glycogen metabolism under normal and pathological conditions

    Muscle glycogen remodeling and glycogen phosphate metabolism following exhaustive exercise of wild type and laforin knockout mice

    Get PDF
    Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease

    Lack of liver glycogen causes hepatic insulin resistance and steatosis in mice

    Get PDF
    Disruption of the Gys2 gene encoding the liver isoform of glycogen synthase generates a mouse strain (LGSKO) that almost completely lacks hepatic glycogen, has impaired glucose disposal, and is pre-disposed to entering the fasted state. This study investigated how the lack of liver glycogen increases fat accumulation and the development of liver insulin resistance. Insulin signaling in LGSKO mice was reduced in liver, but not muscle, suggesting an organ-specific defect. Phosphorylation of components of the hepatic insulin-signaling pathway, namely IRS1, Akt, and GSK3, was decreased in LGSKO mice. Moreover, insulin stimulation of their phosphorylation was significantly suppressed, both temporally and in an insulin dose response. Phosphorylation of the insulin-regulated transcription factor FoxO1 was somewhat reduced and insulin treatment did not elicit normal translocation of FoxO1 out of the nucleus. Fat overaccumulated in LGSKO livers, showing an aberrant distribution in the acinus, an increase not explained by a reduction in hepatic triglyceride export. Rather, when administered orally to fasted mice, glucose was directed toward hepatic lipogenesis as judged by the activity, protein levels, and expression of several fatty acid synthesis genes, namely, acetyl-CoA carboxylase, fatty acid synthase, SREBP1c, chREBP, glucokinase, and pyruvate kinase. Furthermore, using cultured primary hepatocytes, we found that lipogenesis was increased by 40% in LGSKO cells compared with controls. Of note, the hepatic insulin resistance was not associated with increased levels of pro-inflammatory markers. Our results suggest that loss of liver glycogen synthesis diverts glucose toward fat synthesis, correlating with impaired hepatic insulin signaling and glucose disposal

    Glycogen Phosphomonoester Distribution in Mouse Models of the Progressive Myoclonic Epilepsy, Lafora Disease

    Get PDF
    Glycogen is a branched polymer of glucose that acts as an energy reserve in many cell types. Glycogen contains trace amounts of covalent phosphate, in the range of 1 phosphate per 500–2000 glucose residues depending on the source. The function, if any, is unknown, but in at least one genetic disease, the progressive myoclonic epilepsy Lafora disease, excessive phosphorylation of glycogen has been implicated in the pathology by disturbing glycogen structure. Some 90% of Lafora cases are attributed to mutations of the EPM2A or EPM2B genes, and mice with either gene disrupted accumulate hyperphosphorylated glycogen. It is, therefore, of importance to understand the chemistry of glycogen phosphorylation. Rabbit skeletal muscle glycogen contained covalent phosphate as monoesters of C2, C3, and C6 carbons of glucose residues based on analyses of phospho-oligosaccharides by NMR. Furthermore, using a sensitive assay for glucose 6-P in hydrolysates of glycogen coupled with measurement of total phosphate, we determined the proportion of C6 phosphorylation in rabbit muscle glycogen to be ∼20%. C6 phosphorylation also accounted for ∼20% of the covalent phosphate in wild type mouse muscle glycogen. Glycogen phosphorylation in Epm2a−/− and Epm2b−/− mice was increased 8- and 4-fold compared with wild type mice, but the proportion of C6 phosphorylation remained unchanged at ∼20%. Therefore, our results suggest that C2, C3, and/or C6 phosphate could all contribute to abnormal glycogen structure or to Lafora disease

    Bio-Energy Production from Anaerobic Digestion of Animal and Farm Wastes

    Get PDF
    Track II: Transportation and BiofuelsIncludes audio file (20 min.)US produces annually huge amount of animal and farm wastes (e.g. only cow manure in amount of about 1.8 billion tons). These wastes can be valuable source of renewable energy besides overcoming the environmental problems caused by them such as greenhouse gas effect of methane emission of 22 times worse than carbon dioxide, surface and ground water contamination, odor, dust, ammonia leaching, etc. In this project we systematically studied the process, kinetics, microorganisms interaction and population, and the effects of design and operating parameters on reactor design and scale up of cow manure digestion for bioenergy production and for wastes treatment by developing and implementing advanced imaging, visualization and computational techniques such as computational fluid dynamics (CFD), novel multiple radioactive particles tracking technique (MRPT), novel dual source computed tomography (DSCT), and microbiology imaging techniques. New design and conditions of anaerobic digesters that can reduce significantly the inactive volume and improve the digesters performance have been identified and recommended. In addition, for the first time, the energy produced has been related to the energy introduced in order to maximize the energy output while minimizing the energy input through the mixing power consumed. It is hoped that the findings will be applied in the field to promote bioenergy production and eliminate major environmental pollution problems

    Incorporation of phosphate into glycogen by glycogen synthase

    Get PDF
    The storage polymer glycogen normally contains small amounts of covalently attached phosphate as phosphomonoesters at C2, C3 and C6 atoms of glucose residues. In the absence of the laforin phosphatase, as in the rare childhood epilepsy Lafora disease, the phosphorylation level is elevated and is associated with abnormal glycogen structure that contributes to the pathology. Laforin therefore likely functions in vivo as a glycogen phosphatase. The mechanism of glycogen phosphorylation is less well-understood. We have reported that glycogen synthase incorporates phosphate into glycogen via a rare side reaction in which glucose-phosphate rather than glucose is transferred to a growing polyglucose chain (Tagliabracci et al. (2011) Cell Metab13, 274-282). We proposed a mechanism to account for phosphorylation at C2 and possibly at C3. Our results have since been challenged (Nitschke et al. (2013) Cell Metab17, 756-767). Here we extend the evidence supporting our conclusion, validating the assay used for the detection of glycogen phosphorylation, measurement of the transfer of (32)P from [β-(32)P]UDP-glucose to glycogen by glycogen synthase. The (32)P associated with the glycogen fraction was stable to ethanol precipitation, SDS-PAGE and gel filtration on Sephadex G50. The (32)P-signal was not affected by inclusion of excess unlabeled UDP before analysis or by treatment with a UDPase, arguing against the signal being due to contaminating [β-(32)P]UDP generated in the reaction. Furthermore, [(32)P]UDP did not bind non-covalently to glycogen. The (32)P associated with glycogen was released by laforin treatment, suggesting that it was present as a phosphomonoester. The conclusion is that glycogen synthase can mediate the introduction of phosphate into glycogen, thereby providing a possible mechanism for C2, and perhaps C3, phosphorylation

    A Virtual World Versus Face-to-Face Intervention Format to Promote Diabetes Self-Management Among African American Women: A Pilot Randomized Clinical Trial

    Get PDF
    BACKGROUND: Virtual world environments have the potential to increase access to diabetes self-management interventions and may lower cost. OBJECTIVE: We tested the feasibility and comparative effectiveness of a virtual world versus a face-to-face diabetes self-management group intervention. METHODS: We recruited African American women with type 2 diabetes to participate in an 8-week diabetes self-management program adapted from Power to Prevent, a behavior-change in-person group program for African Americans with diabetes or pre-diabetes. The program is social cognitive theory-guided, evidence-based, and culturally tailored. Participants were randomized to participate in the program via virtual world (Second Life) or face-to-face, both delivered by a single intervention team. Blinded assessors conducted in-person clinical (HbA1c), behavioral, and psychosocial measurements at baseline and 4-month follow-up. Pre-post differences within and between intervention groups were assessed using t tests and chi-square tests (two-sided and intention-to-treat analyses for all comparisons). RESULTS: Participants (N = 89) were an average of 52 years old (SD 10), 60% had \u3c /=high school, 82% had household incomes \u3c US 30,000,andcomputerexperiencewasvariable.Overallsessionattendancewassimilaracrossthegroups(6.8/8sessions,P=.90).Comparedtofacetoface,virtualworldwasslightlysuperiorfortotalactivity,lightactivity,andinactivity(P=.05,P=.07,andP=.025,respectively).HbA1creductionwassignificantwithinfacetoface(0.46,P=02)butnotwithinvirtualworld(0.31,P=.19),althoughtherewerenosignificantbetweengroupdifferencesinHbA1c(P=.52).Inbothgroups,1430,000, and computer experience was variable. Overall session attendance was similar across the groups (6.8/8 sessions, P = .90). Compared to face-to-face, virtual world was slightly superior for total activity, light activity, and inactivity (P = .05, P = .07, and P = .025, respectively). HbA1c reduction was significant within face-to-face (-0.46, P = 02) but not within virtual world (-0.31, P = .19), although there were no significant between group differences in HbA1c (P = .52). In both groups, 14% fewer patients had post-intervention HbA1c \u3e /=9% (virtual world P = .014; face-to-face P = .002), with no significant between group difference (P = .493). Compared to virtual world, face-to-face was marginally superior for reducing depression symptoms (P = .051). The virtual world intervention costs were US 1117 versus US $931 for face-to-face. CONCLUSIONS: It is feasible to deliver diabetes self-management interventions to inner city African American women via virtual worlds, and outcomes may be comparable to those of face-to-face interventions. Further effectiveness research is warranted. TRIAL REGISTRATION: ClinicalTrials.gov NCT01340079; http://clinicaltrials.gov/show/NCT01340079 (Archived by WebCite at http://www.webcitation.org/6T2aSvmka)

    Circulating Citrate Is Associated with Liver Fibrosis in Nonalcoholic Fatty Liver Disease and Nonalcoholic Steatohepatitis

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is associated with mitochondrial damage. Circulating mitochondrial metabolites may be elevated in NAFLD but their associations with liver damage is not known. This study aimed to assess the association of key mitochondrial metabolites with the degree of liver fibrosis in the context of NAFLD and nonalcoholic steatohepatitis (NASH). Cross-sectional analyses were performed on two cohorts of biopsy-proven NAFLD and/or NASH subjects. The association of circulating mitochondrial metabolite concentrations with liver fibrosis was assessed using linear regression analysis. In the single-center cohort of NAFLD subjects (n = 187), the mean age was 54.9 ±13.0 years, 40.1% were female and 86.1% were White. Type 2 diabetes (51.3%), hypertension (43.9%) and obesity (72.2%) were prevalent. Those with high citrate had a higher proportion of moderate/significant liver fibrosis (stage F ≥ 2) (68.4 vs. 39.6%, p = 0.001) and advanced fibrosis (stage F ≥ 3) (31.6 vs. 13.6%, p = 0.01). Citrate was associated with liver fibrosis independent of age, sex, NAFLD activity score and metabolic syndrome (per 1 SD increase: β = 0.19, 95% CI: 0.03–0.35, p = 0.02). This association was also observed in a cohort of NASH subjects (n = 176) (β = 0.21, 95% CI: 0.07–0.36, p = 0.005). The association of citrate with liver fibrosis was observed in males (p = 0.005) but not females (p = 0.41). In conclusion, circulating citrate is elevated and associated with liver fibrosis, particularly in male subjects with NAFLD and NASH. Mitochondrial function may be a target to consider for reducing the progression of liver fibrosis and NASH.</p

    Broadband Multi-wavelength Properties of M87 during the 2017 Event Horizon Telescope Campaign

    Get PDF
    In 2017, the Event Horizon Telescope (EHT) Collaboration succeeded in capturing the first direct image of the center of the M87 galaxy. The asymmetric ring morphology and size are consistent with theoretical expectations for a weakly accreting supermassive black hole of mass similar to 6.5 x 10(9) M-circle dot. The EHTC also partnered with several international facilities in space and on the ground, to arrange an extensive, quasi-simultaneous multi-wavelength campaign. This Letter presents the results and analysis of this campaign, as well as the multi-wavelength data as a legacy data repository. We captured M87 in a historically low state, and the core flux dominates over HST-1 at high energies, making it possible to combine core flux constraints with the more spatially precise very long baseline interferometry data. We present the most complete simultaneous multi-wavelength spectrum of the active nucleus to date, and discuss the complexity and caveats of combining data from different spatial scales into one broadband spectrum. We apply two heuristic, isotropic leptonic single-zone models to provide insight into the basic source properties, but conclude that a structured jet is necessary to explain M87's spectrum. We can exclude that the simultaneous gamma-ray emission is produced via inverse Compton emission in the same region producing the EHT mm-band emission, and further conclude that the gamma-rays can only be produced in the inner jets (inward of HST-1) if there are strongly particle-dominated regions. Direct synchrotron emission from accelerated protons and secondaries cannot yet be excluded
    corecore