24 research outputs found

    Ferritin and Percent Transferrin Saturation Levels Predict Type 2 Diabetes Risk and Cardiovascular Disease Outcomes

    Get PDF
    Introduction: Type 2 diabetes (T2D) and cardiovascular disease (CVD) risk associate withferritin and percent transferrin saturation (%TS) levels. However, increased risk has been observed at levels considered within the “normal range” for these markers. Objective: To define normative ferritin and %TS levels associated with T2D and CVD risk. Methods: Six-monthly ferritin, %TS and hemoglobin levels from 1,277 iron reduction clinical trial participants with CVD (peripheral arterial disease, 37% diabetic) permitted pair-wise analysis using Loess Locally Weighted Smoothing plots. Curves showed continuous quantitative ferritin, hemoglobin (reflecting physiologic iron requirements), and %TS (reflecting iron transport and sequestration) levels over a wide range of values. Inflection points in the curves were compared to ferritin and %TS levels indicating increased T2D and CVD risk in epidemiologic and intervention studies. Results: Increasing ferritin up to about 80 ng/mL and %TS up to about 25% TS corresponded to increasing hemoglobin levels, and minimal T2D and CVD risk. Displaced Loess trajectories reflected lower hemoglobin levels in diabetics compared to non-diabetics. Ferritin levels up to about 100 ng/mL paralleled proportionately increasing %TS levels up to about 55%TS corresponding to further limitation of T2D and CVD risk. Ferritin levels over 100 ng/mL did not associate with hemoglobin levels and coincided with increased T2D and CVD risk. Conclusions: Recognition of modified normal ranges for ferritin from about 15 ng/mL up to about 80- 100 ng/mL and %TS from about 15% up to about 25-55% may improve the value of iron biomarkers to assess and possibly lower T2D and CVD risk

    Perspectives on Primary Blast Injury of the Brain: Translational Insights Into Non-inertial Low-Intensity Blast Injury

    Get PDF
    Most traumatic brain injuries (TBIs) during military deployment or training are clinically “mild” and frequently caused by non-impact blast exposures. Experimental models were developed to reproduce the biological consequences of high-intensity blasts causing moderate to severe brain injuries. However, the pathophysiological mechanisms of low-intensity blast (LIB)-induced neurological deficits have been understudied. This review provides perspectives on primary blast-induced mild TBI models and discusses translational aspects of LIB exposures as defined by standardized physical parameters including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure model, which reproduces deployment-related scenarios of open-field blast (OFB), caused neurobehavioral changes, including reduced exploratory activities, elevated anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning and memory. These functional impairments associate with subcellular and ultrastructural neuropathological changes, such as myelinated axonal damage, synaptic alterations, and mitochondrial abnormalities occurring in the absence of gross- or cellular damage. Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity. LIB also induced increased levels of total tau, phosphorylated tau, and amyloid β peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We also compare translational aspects of OFB findings to alternative blast injury models. By scoping relevant recent research findings, we provide recommendations for future preclinical studies to better reflect military-operational and clinical realities. Overall, better alignment of preclinical models with clinical observations and experience related to military injuries will facilitate development of more precise diagnosis, clinical evaluation, treatment, and rehabilitation

    Low-Intensity Blast Induces Acute Glutamatergic Hyperexcitability in Mouse Hippocampus Leading to Long-Term Learning Deficits and Altered Expression of Proteins Involved in Synaptic Plasticity and Serine Protease Inhibitors

    Get PDF
    Neurocognitive consequences of blast-induced traumatic brain injury (bTBI) pose significant concerns for military service members and veterans with the majority of invisible injury. However, the underlying mechanism of such mild bTBI by low-intensity blast (LIB) exposure for long-term cognitive and mental deficits remains elusive. Our previous studies have shown that mice exposed to LIB result in nanoscale ultrastructural abnormalities in the absence of gross or apparent cellular damage in the brain. Here we tested the hypothesis that glutamatergic hyperexcitability may contribute to long-term learning deficits. Using brain slice electrophysiological recordings, we found an increase in averaged frequencies with a burst pattern of miniature excitatory postsynaptic currents (mEPSCs) in hippocampal CA3 neurons in LIB-exposed mice at 1- and 7-days post injury, which was blocked by a specific NMDA receptor antagonist AP5. In addition, cognitive function assessed at 3-months post LIB exposure by automated home-cage monitoring showed deficits in dynamic patterns of discrimination learning and cognitive flexibility in LIB-exposed mice. Collected hippocampal tissue was further processed for quantitative global-proteomic analysis. Advanced data-independent acquisition for quantitative tandem mass spectrometry analysis identified altered expression of proteins involved in synaptic plasticity and serine protease inhibitors in LIB-exposed mice. Some were correlated with the ability of discrimination learning and cognitive flexibility. These findings show that acute glutamatergic hyperexcitability in the hippocampus induced by LIB may contribute to long-term cognitive dysfunction and protein alterations. Studies using this military-relevant mouse model of mild bTBI provide valuable insights into developing a potential therapeutic strategy to ameliorate hyperexcitability-modulated LIB injuries

    Shock Wave Physics as Related to Primary Non-Impact Blast-Induced Traumatic Brain Injury

    No full text
    Introduction: Blast overpressure exposure, an important cause of traumatic brain injury (TBI), may occur during combat or military training. TBI, most commonly mild TBI, is considered a signature injury of recent combat in Iraq and Afghanistan. Low intensity primary blast-induced TBI (bTBI), caused by exposure to an explosive shock wave, commonly leaves no obvious physical external signs. Numerous studies have been conducted to understand its biological effects; however, the role of shock wave energy as related to bTBI remains poorly understood. This report combines shock wave analysis with established biological effects on the mouse brain to provide insights into the effects of shock wave physics as related to low intensity bTBI outcomes from both open-air and shock tube environments. Methods: Shock wave peak pressure, rise time, positive phase duration, impulse, shock velocity, and particle velocity were measured using the Missouri open-air blast model from 16 blast experiments totaling 122 mice to quantify physical shock wave properties. Open-air shock waves were generated by detonating 350-g 1-m suspended Composition C-4 charges with targets on 1-m elevated stands at 2.15, 3, 4, and 7 m from the source. Results: All mice sustained brain injury with no observable head movement, because of mice experiencing lower dynamic pressures than calculated in shock tubes. Impulse, pressure loading over time, was found to be directly related to bTBI severity and is a primary shock physics variable that relates to bTBI. Discussion: The physical blast properties including shock wave peak pressure, rise time, positive phase duration, impulse, shock velocity, and particle velocity were examined using the Missouri open-air blast model in mice with associated neurobehavioral deficits. The blast-exposed mice sustained ultrastructural abnormalities in mitochondria, myelinated axons, and synapses, implicating that primary low intensity blast leads to nanoscale brain damage by providing the link to its pathogenesis. The velocity of the shock wave reflected back from the target stand was calculated from high-speed video and compared with that of the incident shock wave velocity. Peak incident pressure measured from high sample rate sensors was found to be within 1% of the velocity recorded by the high-speed camera, concluding that using sensors in or close to an animal brain can provide useful information regarding shock velocity within the brain, leading to more advanced knowledge between shock wave physics and tissue damage that leads to bTBIs

    Nanometer Ultrastructural Brain Damage Following Low Intensity Primary Blast Wave Exposure

    Get PDF
    Blast-induced mild traumatic brain injury (mTBI) is of particular concern among military personnel due to exposure to blast energy during military training and combat. The impact of primary low-intensity blast mediated pathophysiology upon later neurobehavioral disorders has been controversial. Developing a military preclinical blast model to simulate the pathophysiology of human blast injury is an important first step. This article provides an overview of primary blast effects and perspectives of our recent studies demonstrating ultrastructural changes in the brain and behavioral disorders resulting from open-field blast exposures up to 46.6 kPa using a murine model. The model is scalable and permits exposure to varying magnitudes of primary blast injuries by placing animals at different distances from the blast center or by changing the amount of C4 charge. We here review the implications and future applications and directions of using this animal model to uncover the underlying mechanisms related to primary blast injury. Overall, these studies offer the prospect of enhanced understanding of the pathogenesis of primary low-intensity blast-induced TBI and insights for prevention, diagnosis and treatment of blast induced TBI, particularly mTBI/concussion related to current combat exposures

    Distribution of vasoactive intestinal peptide and its receptors in the arteries of the rabbit

    No full text
    Vasoactive intestinal peptide (VIP) is a widely distributed neurotransmitter whose dilatory effects on vascular smooth muscle are believed to be mediated via specific receptors. To determine the possible role of VIP in regulating specific vascular beds, we examined the relationship between arterial wall VIP content as determined by radioimmunoassay and VIP receptors mapped by autoradiography. Analysis of arteries from 12 adult New Zealand rabbits showed that VIP receptors were consistently located in the wall of all muscular arteries, and that the 125I-VIP grain density correlated with VIP content. 125I-VIP binding in the mesenteric, renal, and iliac arteries was abundant and their VIP content was 192 ± 56, 51 ± 5, and 74 ± 23 fmole/mg protein, respectively. 125I-VIP binding to the thoracic aorta was indistinguishable from nonspecific binding, its VIP content being 15 ± 2 fmole/mg protein. The abundance of VIP receptors and the high VIP levels associated with the mesenteric, renal, and iliac arteries suggest that VIP is a potential regulator of flow to the vascular beds supplied by these arteries. In contrast, the much lower density of receptors in the extracranial carotid, which is also a muscular artery, suggests that, in rabbits, control of carotid vasomotion may be less dependent on VIP innervation. Furthermore, these results suggest that VIP receptors and VIP-containing neurons are not uniformly distributed in the arterial vasculature and that VIP may have selective vasodilatory effects. © 1989
    corecore