355 research outputs found

    Measuring the effect of public health campaigns on Twitter: the case of World Autism Awareness Day

    Get PDF
    Mass media campaigns are traditional methods of raising public awareness in order to reinforce positive behaviors and beliefs. However, social media platforms such as Twitter have the potential to offer an additional route into raising awareness of general and specific health conditions. The aim of this study was to investigate the extent to which a public health campaign, World Autism Awareness Day (WAAD), could increase Twitter activity and influence the average sentiment on Twitter, and to discover the types of information that was shared on the platform during a targeted awareness campaign. This study gathered over 2,315,283 tweets in a two-month period. Evidence suggests that the autism campaign, WAAD, was successful in raising awareness on Twitter, as an increase in both the volume of tweets and level of positive sentiment were observed during this time. In addition, a framework for assessing the success of health campaigns was developed. Further work is required on this topic to determine whether health campaigns have any long lasting impact on Twitter users

    Stimulated emission of polarization-entangled photons

    Get PDF
    Entangled photon pairs -- discrete light quanta that exhibit non-classical correlations -- play a crucial role in quantum information science (for example in demonstrations of quantum non-locality and quantum cryptography). At the macroscopic optical field level non-classical correlations can also be important, as in the case of squeezed light, entangled light beams and teleportation of continuous quantum variables. Here we use stimulated parametric down-conversion to study entangled states of light that bridge the gap between discrete and macroscopic optical quantum correlations. We demonstrate experimentally the onset of laser-like action for entangled photons. This entanglement structure holds great promise in quantum information science where there is a strong demand for entangled states of increasing complexity.Comment: 5 pages, 4 figures, RevTeX

    A Test of Multisession Automatic Action Tendency Retraining to Reduce Alcohol Consumption Among Young Adults in the Context of a Human Laboratory Paradigm.

    Get PDF
    BACKGROUND: Young adult heavy drinking is an important public health concern. Current interventions have efficacy but with only modest effects, and thus, novel interventions are needed. In prior studies, heavy drinkers, including young adults, have demonstrated stronger automatically triggered approach tendencies to alcohol-related stimuli than lighter drinkers. Automatic action tendency retraining has been developed to correct this tendency and consequently reduce alcohol consumption. This study is the first to test multiple iterations of automatic action tendency retraining, followed by laboratory alcohol self-administration. METHODS: A total of 72 nontreatment-seeking, heavy drinking young adults ages 21 to 25 were randomized to automatic action tendency retraining or a control condition (i.e., sham training ). Of these, 69 (54% male) completed 4 iterations of retraining or the control condition over 5 days with an alcohol drinking session on Day 5. Self-administration was conducted according to a human laboratory paradigm designed to model individual differences in impaired control (i.e., difficulty adhering to limits on alcohol consumption). RESULTS: Automatic action tendency retraining was not associated with greater reduction in alcohol approach tendency or less alcohol self-administration than the control condition. The laboratory paradigm was probably sufficiently sensitive to detect an effect of an experimental manipulation given the range of self-administration behavior observed, both in terms of number of alcoholic and nonalcoholic drinks and measures of drinking topography. CONCLUSIONS: Automatic action tendency retraining was ineffective among heavy drinking young adults without motivation to change their drinking. Details of the retraining procedure may have contributed to the lack of a significant effect. Despite null primary findings, the impaired control laboratory paradigm is a valid laboratory-based measure of young adult alcohol consumption that provides the opportunity to observe drinking topography and self-administration of nonalcoholic beverages (i.e., protective behavioral strategies directly related to alcohol use)

    Demonstration of Feed-Forward Control for Linear Optics Quantum Computation

    Get PDF
    One of the main requirements in linear optics quantum computing is the ability to perform single-qubit operations that are controlled by classical information fed forward from the output of single photon detectors. These operations correspond to pre-determined combinations of phase corrections and bit-flips that are applied to the post-selected output modes of non-deterministic quantum logic devices. Corrections of this kind are required in order to obtain the correct logical output for certain detection events, and their use can increase the overall success probability of the devices. In this paper, we report on the experimental demonstration of the use of this type of feed-forward system to increase the probability of success of a simple non-deterministic quantum logic operation from approximately 1/4 to 1/2. This logic operation involves the use of one target qubit and one ancilla qubit which, in this experiment, are derived from a parametric down-conversion photon pair. Classical information describing the detection of the ancilla photon is fed-forward in real-time and used to alter the quantum state of the output photon. A fiber optic delay line is used to store the output photon until a polarization-dependent phase shift can be applied using a high speed Pockels cell

    Probabilistic Quantum Logic Operations Using Polarizing Beam Splitters

    Full text link
    It has previously been shown that probabilistic quantum logic operations can be performed using linear optical elements, additional photons (ancilla), and post-selection based on the output of single-photon detectors. Here we describe the operation of several quantum logic operations of an elementary nature, including a quantum parity check and a quantum encoder, and we show how they can be combined to implement a controlled-NOT (CNOT) gate. All of these gates can be constructed using polarizing beam splitters that completely transmit one state of polarization and totally reflect the orthogonal state of polarization, which allows a simple explanation of each operation. We also describe a polarizing beam splitter implementation of a CNOT gate that is closely analogous to the quantum teleportation technique previously suggested by Gottesman and Chuang [Nature 402, p.390 (1999)]. Finally, our approach has the interesting feature that it makes practical use of a quantum-eraser technique.Comment: 9 pages, RevTex; Submitted to Phys. Rev. A; additional references inlcude

    Probing the quantum vacuum with an artificial atom in front of a mirror

    Full text link
    Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a very real impact, \emph{e.g.}, in the Casimir effects and the lifetimes of atoms. Engineering vacuum fluctuations is therefore becoming increasingly important to emerging technologies. Here, we shape vacuum fluctuations using a "mirror", creating regions in space where they are suppressed. As we then effectively move an artificial atom in and out of these regions, measuring the atomic lifetime tells us the strength of the fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a factor of 50 below what would be expected without the mirror, demonstrating that we can hide the atom from the vacuum

    Computer-aided detection in breast MRI: a systematic review and meta-analysis

    Get PDF
    To evaluate the additional value of computer-aided detection (CAD) in breast MRI by assessing radiologists' accuracy in discriminating benign from malignant breast lesions. A literature search was performed with inclusion of relevant studies using a commercially available CAD system with automatic colour mapping. Two independent researchers assessed the quality of the studies. The accuracy of the radiologists' performance with and without CAD was presented as pooled sensitivity and specificity. Of 587 articles, 10 met the inclusion criteria, all of good methodological quality. Experienced radiologists reached comparable pooled sensitivity and specificity before and after using CAD (sensitivity: without CAD: 89%; 95% CI: 78-94%, with CAD: 89%; 95%CI: 81-94%) (specificity: without CAD: 86%; 95% CI: 79-91%, with CAD: 82%; 95% CI: 76-87%). For residents the pooled sensitivity increased from 72% (95% CI: 62-81%) without CAD to 89% (95% CI: 80-94%) with CAD, however, not significantly. Concerning specificity, the results were similar (without CAD: 79%; 95% CI: 69-86%, with CAD: 78%; 95% CI: 69-84%). CAD in breast MRI has little influence on the sensitivity and specificity of experienced radiologists and therefore their interpretation remains essential. However, residents or inexperienced radiologists seem to benefit from CAD concerning breast MRI evaluation
    • …
    corecore