304 research outputs found

    Relative pleopod length as an indicator of size at sexual maturity in slipper (Scyllarides squammosus) and spiny Hawaiian (Panulirus marginatus) lobsters

    Get PDF
    Body size at gonadal maturity is described for females of the slipper lobster (Scyllarides squammosus) (Scyllaridae) and the endemic Hawaiian spiny lobster (Panulirus marginatus) (Palinuridae) based on microscopic examination of histological preparations of ovaries. These data are used to validate several morphological metrics (relative exopodite length, ovigerous condition) of functional sexual maturity. Relative exopodite length (“pleopod length”) produced consistent estimates of size at maturity when evaluated with a newly derived statistical application for estimating size at the morphometric maturation point (MMP) for the population, identified as the midpoint of a sigmoid function spanning the estimated boundaries of overlap between the largest immature and smallest adult animals. Estimates of the MMP were related to matched (same-year) characterizations of sexual maturity based on ovigerous condition — a more conventional measure of functional maturity previously used to characterize maturity for the two lobster species. Both measures of functional maturity were similar for the respective species and were within 5% and 2% of one another for slipper and spiny lobster, respectively. The precision observed for two shipboard collection series of pleopod-length data indicated that the method is reliable and not dependent on specialized expertise. Precision of maturity estimates for S. squammosus with the pleopod-length metric was similar to that for P. marginatus with any of the other measures (including conventional evidence of ovigerous condition) and greatly exceeded the precision of estimates for S. squammosus based on ovigerous condition alone. The two measures of functional maturity averaged within 8% of the estimated size at gonadal maturity for the respective species. Appendage-to-body size proportions, such as the pleopod length metric, hold great promise, particularly for species of slipper lobsters like S. squammosus for which there exist no other reliable conventional morphological measures of sexual maturity. Morphometric proportions also should be included among the factors evaluated when assessing size at sexual maturity in spiny lobster stocks; previously, these proportions have been obtained routinely only for brachyuran crabs within the Crustacea

    The role of alexithymia in the development of functional motor symptoms (conversion disorder).

    Get PDF
    BACKGROUND: The mechanisms leading to the development of functional motor symptoms (FMS) are of pathophysiological and clinical relevance, yet are poorly understood. AIM: The aim of the present study was to evaluate whether impaired emotional processing at the cognitive level (alexithymia) is present in patients affected by FMS. We conducted a cross-sectional study in a population of patients with FMS and in two control groups (patients with organic movement disorders (OMD) and healthy volunteers). METHODS: 55 patients with FMS, 33 patients affected by OMD and 34 healthy volunteers were recruited. The assessment included the 20-item Toronto Alexithymia Scale (TAS-20), the Montgomery-Asberg Depression Rating Scale, the Reading the Mind in the Eyes' Test and the Structured Clinical Interview for Personality Disorders. RESULTS: Alexithymia was present in 34.5% of patients with FMS, 9.1% with OMD and 5.9% of the healthy volunteers, which was significantly higher in the FMS group (χ(2) (2)=14.129, p<0.001), even after controlling for the severity of symptoms of depression. Group differences in mean scores were observed on both the difficulty identifying feelings and difficulty describing feelings dimensions of the TAS-20, whereas the externally orientated thinking subscale score was similar across the three groups. Regarding personality disorder, χ(2) analysis showed a significantly higher prominence of obsessive-compulsive personality disorder (OCPD) in the FMS group (χ(2) (2)=16.217, p<0.001) and 71.4% of those with OCPD also reached threshold criteria for alexithymia. CONCLUSIONS: Because alexithymia is a mental state denoting the inability to identify emotions at a cognitive level, one hypothesis is that some patients misattribute autonomic symptoms of anxiety, for example, tremor, paraesthesiae, paralysis, to that of a physical illness. Further work is required to understand the contribution of OCPD to the development of FMS

    Single Photons on Pseudo-Demand from Stored Parametric Down-Conversion

    Full text link
    We describe the results of a parametric down-conversion experiment in which the detection of one photon of a pair causes the other photon to be switched into a storage loop. The stored photon can then be switched out of the loop at a later time chosen by the user, providing a single photon for potential use in a variety of quantum information processing applications. Although the stored single photon is only available at periodic time intervals, those times can be chosen to match the cycle time of a quantum computer by using pulsed down-conversion. The potential use of the storage loop as a photonic quantum memory device is also discussed.Comment: 8 pages, 7 Figs., RevTe

    Demonstration of Feed-Forward Control for Linear Optics Quantum Computation

    Get PDF
    One of the main requirements in linear optics quantum computing is the ability to perform single-qubit operations that are controlled by classical information fed forward from the output of single photon detectors. These operations correspond to pre-determined combinations of phase corrections and bit-flips that are applied to the post-selected output modes of non-deterministic quantum logic devices. Corrections of this kind are required in order to obtain the correct logical output for certain detection events, and their use can increase the overall success probability of the devices. In this paper, we report on the experimental demonstration of the use of this type of feed-forward system to increase the probability of success of a simple non-deterministic quantum logic operation from approximately 1/4 to 1/2. This logic operation involves the use of one target qubit and one ancilla qubit which, in this experiment, are derived from a parametric down-conversion photon pair. Classical information describing the detection of the ancilla photon is fed-forward in real-time and used to alter the quantum state of the output photon. A fiber optic delay line is used to store the output photon until a polarization-dependent phase shift can be applied using a high speed Pockels cell

    Characterization of JBURE-IIb isoform of Canavalia ensiformis (L.) DC urease.

    Get PDF
    Ureases, nickel-dependent enzymes that catalyze the hydrolysis of urea into ammonia and bicarbonate, are widespread in plants, bacteria, and fungi. Previously, we cloned a cDNA encoding a Canavalia ensiformis urease isoform named JBURE-II, corresponding to a putative smaller urease protein (78 kDa) when compared to other plant ureases. Aiming to produce the recombinant protein, we obtained jbure-IIb, with different 3? and 5? ends, encoding a 90 kDa urease. Three peptides unique to the JBURE-II/-IIb protein were detected by mass spectrometry in seed extracts, indicating that jbure-II/-IIb is a functional gene. Comparative modeling indicates that JBURE-IIb urease has an overall shape almost identical to C. ensiformis major urease JBURE-I with all residues critical for urease activity. The cDNA was cloned into the pET101 vector and the recombinant protein was produced in Escherichia coli. The JBURE-IIb protein, although enzymatically inactive presumably due to the absence of Ni atoms in its active site, impaired the growth of a phytopathogenic fungus and showed entomotoxic properties, inhibiting diuresis of Rhodnius prolixus isolated Malpighian tubules, in concentrations similar to those reported for JBURE-I and canatoxin. The antifungal and entomotoxic properties of the recombinant JBURE-IIb apourease are consistent with a protective role of ureases in plants

    Breast MRI in the Diagnostic and Preoperative Workup Among Medicare Beneficiaries With Breast Cancer

    Get PDF
    We compared the frequency and sequence of breast imaging and biopsy use for the diagnostic and preoperative workup of breast cancer according to breast MRI use among older women

    Probabilistic Quantum Logic Operations Using Polarizing Beam Splitters

    Full text link
    It has previously been shown that probabilistic quantum logic operations can be performed using linear optical elements, additional photons (ancilla), and post-selection based on the output of single-photon detectors. Here we describe the operation of several quantum logic operations of an elementary nature, including a quantum parity check and a quantum encoder, and we show how they can be combined to implement a controlled-NOT (CNOT) gate. All of these gates can be constructed using polarizing beam splitters that completely transmit one state of polarization and totally reflect the orthogonal state of polarization, which allows a simple explanation of each operation. We also describe a polarizing beam splitter implementation of a CNOT gate that is closely analogous to the quantum teleportation technique previously suggested by Gottesman and Chuang [Nature 402, p.390 (1999)]. Finally, our approach has the interesting feature that it makes practical use of a quantum-eraser technique.Comment: 9 pages, RevTex; Submitted to Phys. Rev. A; additional references inlcude

    Probing the quantum vacuum with an artificial atom in front of a mirror

    Full text link
    Quantum fluctuations of the vacuum are both a surprising and fundamental phenomenon of nature. Understood as virtual photons flitting in and out of existence, they still have a very real impact, \emph{e.g.}, in the Casimir effects and the lifetimes of atoms. Engineering vacuum fluctuations is therefore becoming increasingly important to emerging technologies. Here, we shape vacuum fluctuations using a "mirror", creating regions in space where they are suppressed. As we then effectively move an artificial atom in and out of these regions, measuring the atomic lifetime tells us the strength of the fluctuations. The weakest fluctuation strength we observe is 0.02 quanta, a factor of 50 below what would be expected without the mirror, demonstrating that we can hide the atom from the vacuum

    Quantum computing with mixed states

    Full text link
    We discuss a model for quantum computing with initially mixed states. Although such a computer is known to be less powerful than a quantum computer operating with pure (entangled) states, it may efficiently solve some problems for which no efficient classical algorithms are known. We suggest a new implementation of quantum computation with initially mixed states in which an algorithm realization is achieved by means of optimal basis independent transformations of qubits.Comment: 2 figures, 52 reference
    corecore