308 research outputs found

    A Single-Cell Analysis of the Transmission of Enzyme-Forming Capacity in Yeast

    Full text link

    Pharmacological Blockade of the Calcium Plateau Provides Neuroprotection Following Organophosphate Paraoxon Induced Status Epilepticus in Rats

    Get PDF
    Organophosphate (OP) compounds which include nerve agents and pesticides are considered chemical threat agents. Currently approved antidotes are crucial in limiting OP mediated acute mortality. However, survivors of lethal OP exposure exhibit delayed neuronal injury and chronic behavioral morbidities. In this study, we investigated neuroprotective capabilities of dantrolene and carisbamate in a rat survival model of paraoxon (POX) induced status epilepticus (SE). Significant elevations in hippocampal calcium levels were observed 48-h post POX SE survival, and treatment with dantrolene (10 mg/kg, i.m.) and carisbamate (90 mg/kg, i.m.) lowered these protracted calcium elevations. POX SE induced delayed neuronal injury as characterized by Fluoro Jade C labeling was observed in critical brain areas including the dentate gyrus, parietal cortex, amygdala, and thalamus. Dantrolene and carisbamate treatment provided significant neuroprotection against delayed neuronal damage in these brain regions when administered one-hour after POX-SE. These results indicate that dantrolene or carisbamate could be effective adjuvant therapies to the existing countermeasures to reduce neuronal injury and behavioral morbidities post OP SE survival

    Prospective open-label study of add-on and monotherapy topiramate in civilians with chronic nonhallucinatory posttraumatic stress disorder

    Get PDF
    BACKGROUND: In order to confirm therapeutic effects of topiramate on posttraumatic stress disorder (PTSD) observed in a prior study, a new prospective, open-label study was conducted to examine acute responses in chronic, nonhallucinatory PTSD. METHODS: Thirty-three consecutive newly recruited civilian adult outpatients (mean age 46 years, 85% female) with DSM-IV-diagnosed chronic PTSD, excluding those with concurrent auditory or visual hallucinations, received topiramate either as monotherapy (n = 5) or augmentation (n = 28). The primary measure was a change in the PTSD Checklist-Civilian Version (PCL-C) score from baseline to 4 weeks, with response defined as a ≥ 30% reduction of PTSD symptoms. RESULTS: For those taking the PCL-C at both baseline and week 4 (n = 30), total symptoms declined by 49% at week 4 (paired t-test, P < 0.001) with similar subscale reductions for reexperiencing, avoidance/numbing, and hyperarousal symptoms. The response rate at week 4 was 77%. Age, sex, bipolar comorbidity, age at onset of PTSD, duration of symptoms, severity of baseline PCL-C score, and monotherapy versus add-on medication administration did not predict reduction in PTSD symptoms. Median time to full response was 9 days and median dosage was 50 mg/day. CONCLUSIONS: Promising open-label findings in a new sample converge with findings of a previous study. The use of topiramate for treatment of chronic PTSD, at least in civilians, warrants controlled clinical trials

    X-ray fluorescence analysis of long-term changes in the levels and distributions of trace elements in the rat brain following mechanical injury

    Get PDF
    This paper describes the results of the application of X-ray fluorescence microscopy to the qualitative, topographic and quantitative elemental analysis of nervous tissue from rats with neocortical brain injury. The tissue samples were analyzed with a 15 μm beam defined by the size of the polycapillary focus. Raster scanning of the samples generated 2D cartographies, revealing the distributions of elements such as P, S, Cl, K, Ca, Fe, Cu, and Zn. Special emphasis was placed on the analysis of the areas neighboring the lesion site and the hippocampal formation tissue. The results obtained for rats with mechanical brain injuries were compared with those recorded for controls and animals with pilocarpine-induced seizures. There were no significant differences in the elemental compositions of gray and white matter between injured and uninjured brain hemispheres. A higher level of Ca was observed in the gray matter of both of the hemispheres in brains with neocortical injuries. A similar relation was noticed for Fe in the white matter. A comparative study of hippocampal formation tissue showed a statistically significant decrease in the mass per unit area of P in the dentate gyrus (DG) and the hilus (H) of DG for animals with brain lesions in comparison with the control group. Analogous relations were found for Cu in the DG and Zn in sector 3 of Ammon’s horn (CA3) and the DG. It is important to note that identical changes in the same areas were observed for animals with pilocarpine-induced seizures in our previous study

    Transcriptome Analysis of the Hippocampal CA1 Pyramidal Cell Region after Kainic Acid-Induced Status Epilepticus in Juvenile Rats

    Get PDF
    Molecular mechanisms involved in epileptogenesis in the developing brain remain poorly understood. The gene array approach could reveal some of the factors involved by allowing the identification of a broad scale of genes altered by seizures. In this study we used microarray analysis to reveal the gene expression profile of the laser microdissected hippocampal CA1 subregion one week after kainic acid (KA)-induced status epilepticus (SE) in 21-day-old rats, which are developmentally roughly comparable to juvenile children. The gene expression analysis with the Chipster software generated a total of 1592 differently expressed genes in the CA1 subregion of KA-treated rats compared to control rats. The KEGG database revealed that the identified genes were involved in pathways such as oxidative phosporylation (26 genes changed), and long-term potentiation (LTP; 18 genes changed). Also genes involved in Ca2+ homeostasis, gliosis, inflammation, and GABAergic transmission were altered. To validate the microarray results we further examined the protein expression for a subset of selected genes, glial fibrillary protein (GFAP), apolipoprotein E (apo E), cannabinoid type 1 receptor (CB1), Purkinje cell protein 4 (PEP-19), and interleukin 8 receptor (CXCR1), with immunohistochemistry, which confirmed the transcriptome results. Our results showed that SE resulted in no obvious CA1 neuronal loss, and alterations in the expression pattern of several genes during the early epileptogenic phase were comparable to previous gene expression studies of the adult hippocampus of both experimental epileptic animals and patients with temporal lobe epilepsy (TLE). However, some changes seem to occur after SE specifically in the juvenile rat hippocampus. Insight of the SE-induced alterations in gene expression and their related pathways could give us hints for the development of new target-specific antiepileptic drugs that interfere with the progression of the disease in the juvenile age group

    An ecological future for weed science to sustain crop production and the environment. A review

    Get PDF
    Sustainable strategies for managing weeds are critical to meeting agriculture's potential to feed the world's population while conserving the ecosystems and biodiversity on which we depend. The dominant paradigm of weed management in developed countries is currently founded on the two principal tools of herbicides and tillage to remove weeds. However, evidence of negative environmental impacts from both tools is growing, and herbicide resistance is increasingly prevalent. These challenges emerge from a lack of attention to how weeds interact with and are regulated by the agroecosystem as a whole. Novel technological tools proposed for weed control, such as new herbicides, gene editing, and seed destructors, do not address these systemic challenges and thus are unlikely to provide truly sustainable solutions. Combining multiple tools and techniques in an Integrated Weed Management strategy is a step forward, but many integrated strategies still remain overly reliant on too few tools. In contrast, advances in weed ecology are revealing a wealth of options to manage weedsat the agroecosystem levelthat, rather than aiming to eradicate weeds, act to regulate populations to limit their negative impacts while conserving diversity. Here, we review the current state of knowledge in weed ecology and identify how this can be translated into practical weed management. The major points are the following: (1) the diversity and type of crops, management actions and limiting resources can be manipulated to limit weed competitiveness while promoting weed diversity; (2) in contrast to technological tools, ecological approaches to weed management tend to be synergistic with other agroecosystem functions; and (3) there are many existing practices compatible with this approach that could be integrated into current systems, alongside new options to explore. Overall, this review demonstrates that integrating systems-level ecological thinking into agronomic decision-making offers the best route to achieving sustainable weed management

    Substrate Stabilization of Enzyme-Forming Capacity During the Segregation of a Heterozygote

    Full text link

    Hypothermia Reduces Mortality, Prevents the Calcium Plateau, and Is Neuroprotective Following Status Epilepticus in Rats

    No full text
    Status Epilepticus (SE) is a major neurological emergency and is considered a leading cause of Acquired Epilepsy (AE). We have shown that SE produces neuronal injury and prolonged alterations in hippocampal calcium levels ([Ca2+]i) that may underlie the development of AE. Interventions preventing the SE-induced Ca2+ plateau could therefore prove to be beneficial in lowering the development of AE after SE. Hypothermia is used clinically to prevent neurological complications associated with Traumatic Brain Injury, cardiac arrest, and stroke. Here, we investigated whether hypothermia prevented the development of Ca2+ plateau following SE. SE was induced in hippocampal neuronal cultures (HNC) by exposing them to no added MgCl2 solution for 3 h. To terminate SE, low Mg2+ solution was washed off with 31°C (hypothermic) or 37°C (normothermic) physiological recording solution. [Ca2+]i was estimated with ratiometric Fura-2 imaging. HNCs washed with hypothermic solution exhibited [Ca2+]i ratios, which were significantly lower than ratios obtained from HNCs washed with normothermic solution. For in vivo SE, the rat pilocarpine (PILO) model was used. Moderate hypothermia (30–33°C) in rats was induced at 30-min post-SE using chilled ethanol spray in a cold room. Hypothermia following PILO-SE significantly reduced mortality. Hippocampal neurons isolated from hypothermia-treated PILO SE rats exhibited [Ca2+]i ratios which were significantly lower than ratios obtained from PILO SE rats. Hypothermia also provided significant neuroprotection against SE-induced delayed hippocampal injury as characterized by decreased FluoroJade C labeling in hypothermia-treated PILO SE rats. We previously demonstrated that hypothermia reduced Ca2+ entry via N-methyl-D-aspartate and ryanodine receptors in HNC. Together, our studies indicate that by targeting these two receptor systems hypothermia could interfere with epileptogenesis and prove to be an effective therapeutic intervention for reducing SE-induced AE
    • …
    corecore