87 research outputs found

    Autonomous Microbial Sampler (AMS), a device for the uncontaminated collection of multiple microbial samples from submarine hydrothermal vents and other aquatic environments

    Get PDF
    Author Posting. © Elsevier B.V., 2006. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 53 (2006): 894-916, doi:10.1016/j.dsr.2006.01.009.An Autonomous Microbial Sampler (AMS) is described that will obtain uncontaminated and exogenous DNA-free microbial samples from most marine, fresh water and hydrothermal ecosystems. Sampling with the AMS may be conducted using manned submersibles, Remotely Operated Vehicles (ROVs), Autonomous Underwater Vehicles (AUVs), or when tethered to a hydrowire during hydrocast operations on research vessels. The modular device consists of a titanium nozzle for sampling in potentially hot environments (>350°C) and fluid-handling components for the collection of six independent filtered or unfiltered samples. An onboard microcomputer permits sampling to be controlled by the investigator, by external devices (e.g., AUV computer), or by internal programming. Temperature, volume pumped and other parameters are recorded during sampling. Complete protection of samples from microbial contamination was observed in tests simulating deployment of the AMS in coastal seawater, where the sampling nozzle was exposed to seawater containing 1x106 cells ml-1 of a red pigmented tracer organism, Serratia marinorubra. Field testing of the AMS at a hydrothermal vent field was successfully undertaken in 2000. Results of DNA destruction studies have revealed that exposure of samples of the Eukaryote Euglena and the bacterium S. marinorubra to 0.5 N sulfuric acid at 23°C for 1 hour was sufficient to remove Polymerase Chain Reaction (PCR) amplifiable DNA. Studies assessing the suitability of hydrogen peroxide as a sterilizing and DNA-destroying agent showed that 20 or 30% hydrogen peroxide sterilized samples of Serratia in 1 hr and destroyed the DNA of Serratia, in 3 hrs, but not 1 or 2 hrs. DNA AWAY™ killed Serratia and destroyed the DNA of both Serratia and the vent microbe (GB-D) of the genus Pyrococcus in 1 hour.This work was supported by a DOC/NOAA Small Business Innovative Research Award, Contract No. 50-DKNA-9-90116 awarded to McLane Research Laboratories, Inc. and (via subcontract) to the Woods Hole Oceanographic Institution. Some of the microbial testing work was also supported by the National Science Foundation, Grant No. IBN-0131557 and the Woods Hole Oceanographic Inst. Deep Ocean Exploration Institute Grant No. 25051131

    A statistical framework to evaluate virtual screening

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Receiver operating characteristic (ROC) curve is widely used to evaluate virtual screening (VS) studies. However, the method fails to address the "early recognition" problem specific to VS. Although many other metrics, such as RIE, BEDROC, and pROC that emphasize "early recognition" have been proposed, there are no rigorous statistical guidelines for determining the thresholds and performing significance tests. Also no comparisons have been made between these metrics under a statistical framework to better understand their performances.</p> <p>Results</p> <p>We have proposed a statistical framework to evaluate VS studies by which the threshold to determine whether a ranking method is better than random ranking can be derived by bootstrap simulations and 2 ranking methods can be compared by permutation test. We found that different metrics emphasize "early recognition" differently. BEDROC and RIE are 2 statistically equivalent metrics. Our newly proposed metric SLR is superior to pROC. Through extensive simulations, we observed a "seesaw effect" – overemphasizing early recognition reduces the statistical power of a metric to detect true early recognitions.</p> <p>Conclusion</p> <p>The statistical framework developed and tested by us is applicable to any other metric as well, even if their exact distribution is unknown. Under this framework, a threshold can be easily selected according to a pre-specified type I error rate and statistical comparisons between 2 ranking methods becomes possible. The theoretical null distribution of SLR metric is available so that the threshold of SLR can be exactly determined without resorting to bootstrap simulations, which makes it easy to use in practical virtual screening studies.</p

    Controlled Experiments of Hillslope Coevolution at the Biosphere 2 Landscape Evolution Observatory: Toward Prediction of Coupled Hydrological, Biogeochemical, and Ecological Change

    Get PDF
    Understanding the process interactions and feedbacks among water, porous geological media, microbes, and vascular plants is crucial for improving predictions of the response of Earth’s critical zone to future climatic conditions. However, the integrated coevolution of landscapes under change is notoriously difficult to investigate. Laboratory studies are limited in spatial and temporal scale, while field studies lack observational density and control. To bridge the gap between controlled laboratory and uncontrollable field studies, the University of Arizona built a macrocosm experiment of unprecedented scale: the Landscape Evolution Observatory (LEO). LEO comprises three replicated, heavily instrumented, hillslope-scale model landscapes within the environmentally controlled Biosphere 2 facility. The model landscapes were designed to initially be simple and purely abiotic, enabling scientists to observe each step in the landscapes’ evolution as they undergo physical, chemical, and biological changes over many years. This chapter describes the model systems and associated research facilities and illustrates how LEO allows for tracking of multiscale matter and energy fluxes at a level of detail impossible in field experiments. Initial sensor, sampler, and soil coring data are already providing insights into the tight linkages between water flow, weathering, and microbial community development. These interacting processes are anticipated to drive the model systems to increasingly complex states and will be impacted by the introduction of vascular plants and changes in climatic regimes over the years to come. By intensively monitoring the evolutionary trajectory, integrating data with mathematical models, and fostering community-wide collaborations, we envision that emergent landscape structures and functions can be linked, and significant progress can be made toward predicting the coupled hydro-biogeochemical and ecological responses to global change

    Phylogenetic and functional marker genes to study ammonia-oxidizing microorganisms (AOM) in the environment

    Get PDF
    The oxidation of ammonia plays a significant role in the transformation of fixed nitrogen in the global nitrogen cycle. Autotrophic ammonia oxidation is known in three groups of microorganisms. Aerobic ammonia-oxidizing bacteria and archaea convert ammonia into nitrite during nitrification. Anaerobic ammonia-oxidizing bacteria (anammox) oxidize ammonia using nitrite as electron acceptor and producing atmospheric dinitrogen. The isolation and cultivation of all three groups in the laboratory are quite problematic due to their slow growth rates, poor growth yields, unpredictable lag phases, and sensitivity to certain organic compounds. Culture-independent approaches have contributed importantly to our understanding of the diversity and distribution of these microorganisms in the environment. In this review, we present an overview of approaches that have been used for the molecular study of ammonia oxidizers and discuss their application in different environments

    First Investigation of the Microbiology of the Deepest Layer of Ocean Crust

    Get PDF
    We would like to thank Frederick (Rick) Colwell for input on molecular analyses in low biomass environments, Donna Blackman, Benoît Ildefonse, Adélie Delacour, and Gretchen Früh-Green for discussions regarding geological and geochemical aspects of this manuscript, and the Integrated Ocean Drilling Program Expeditions 304/305 Science Party. We would also like to thank Captain Alex Simpson and the entire crew of the JOIDES Resolution.Conceived and designed the experiments: OUM MRF SJG. Performed the experiments: OUM TN MR JDVN AM. Analyzed the data: OUM TN MR JDVN AM. Contributed reagents/materials/analysis tools: TN MR JZ MRF SJG. Wrote the paper: OUM.The gabbroic layer comprises the majority of ocean crust. Opportunities to sample this expansive crustal environment are rare because of the technological demands of deep ocean drilling; thus, gabbroic microbial communities have not yet been studied. During the Integrated Ocean Drilling Program Expeditions 304 and 305, igneous rock samples were collected from 0.45-1391.01 meters below seafloor at Hole 1309D, located on the Atlantis Massif (30 °N, 42 °W). Microbial diversity in the rocks was analyzed by denaturing gradient gel electrophoresis and sequencing (Expedition 304), and terminal restriction fragment length polymorphism, cloning and sequencing, and functional gene microarray analysis (Expedition 305). The gabbroic microbial community was relatively depauperate, consisting of a low diversity of proteobacterial lineages closely related to Bacteria from hydrocarbon-dominated environments and to known hydrocarbon degraders, and there was little evidence of Archaea. Functional gene diversity in the gabbroic samples was analyzed with a microarray for metabolic genes (“GeoChip”), producing further evidence of genomic potential for hydrocarbon degradation - genes for aerobic methane and toluene oxidation. Genes coding for anaerobic respirations, such as nitrate reduction, sulfate reduction, and metal reduction, as well as genes for carbon fixation, nitrogen fixation, and ammonium-oxidation, were also present. Our results suggest that the gabbroic layer hosts a microbial community that can degrade hydrocarbons and fix carbon and nitrogen, and has the potential to employ a diversity of non-oxygen electron acceptors. This rare glimpse of the gabbroic ecosystem provides further support for the recent finding of hydrocarbons in deep ocean gabbro from Hole 1309D. It has been hypothesized that these hydrocarbons might originate abiotically from serpentinization reactions that are occurring deep in the Earth's crust, raising the possibility that the lithic microbial community reported here might utilize carbon sources produced independently of the surface biosphere.Yeshttp://www.plosone.org/static/editorial#pee
    corecore