47 research outputs found

    DEMOCRATIZING PUBLIC HEALTH: CITIZEN EMPOWERMENT THROUGH THE BIOTHRILLER GENRE

    Get PDF
    Preparedness—the process of readying for emerging threats—is central to contemporary public health, which strives to anticipate potential problems instead of reacting to medical disasters. However, this concept resonates little outside of elite policymaker circles. Instead, many Americans assume policymaking is an inherently reactive process that rewards politicians for “fixing” existing problems. For example, while the prospect of a pandemic influenza outbreak represents one of American’s most pressing concerns, surveys report pervasive public ignorance about many aspects of preparedness and public health, including disease transmission, prevention practices, and the relationship between zoological and human diseases. For many Americans, it seems, exposure to such issues comes not through first-hand experience or even governmental education efforts, but through the fictional world of “biothrillers.” Biothrillers are a distinct genre of movies, novels, and television shows that depict humankind’s efforts to survive novel and extraordinarily dangerous diseases. Because an informed citizenry is vital to a healthy functioning democracy, this paper considers the capacity of biothrillers to democratize public health by educating citizens about preparedness as well as the risks associated with the emerging diseases. To what extent do biothrillers empower citizens to draw informed conclusions and make informed decisions about contemporary public health practices and health risks? Can biothrillers compensate for scant government education efforts, thereby helping to close the knowledge gap between medical and political elites and the public writ large? This paper examines three prominent biothrillers, Wolfgang Peterson’s 1995 film Outbreak, Richard Pierce’s 2006 film Fatal Contact: Bird Flu in America, and Steven Soderbergh’s 2011 film Contagion. It finds that although biothrillers vary in the extent to which they present accurate depictions of the risks associated with emerging diseases as well as the general practice of public health, most of these films fail to empower citizens to become active participants in the procurement of public health. This shortcoming is largely a testament to the films’ portrayal of citizens as helpless and passive victims. The one exception to this rule is Fatal Contact, which depicts the efforts of neighborhood groups to form ad-hoc influenza monitoring and response programs

    BIOTHRILLER FILMS AND CITIZEN EMPOWERMENT: A VIEWER’S GUIDE TO OUTBREAK, CONTAGION, AND FATAL CONTACT

    Get PDF
    According to University of Hannover Professor Ruth Mayer (2007), biothrillers have long been an important pathway into the American “political unconscious,” as the diseases they depict often serve as “metaphors” for some of the nation’s greatest fears—terrorism, social disintegration, immigration. Beyond their metaphorical qualities, biothrillers, which are often based on real diseases, also expose Americans to the political, scientific, and social dynamics of public health preparedness and response efforts. Wolfgang Peterson’s 1995 film Outbreak, Richard Pierce’s 2006 film Fatal Contact: Bird Flu in America, and Steven Soderbergh’s 2011 film Contagion are all struck from this creative mold, providing largely realistic portrayals of disease transmission, the preparedness cycle, government institutions, and, in some cases, the role of citizen participation in the procurement of public health services. The following viewer’s guide can be used in conjunction with these three films. Questions highlight themes associated with each film while encouraging viewers to compare and contrast Outbreak, Fatal Contact, and Contagion

    Monocytes regulate the mechanism of T-cell death by inducing Fas-mediated apoptosis during bacterial infection.

    Get PDF
    Monocytes and T-cells are critical to the host response to acute bacterial infection but monocytes are primarily viewed as amplifying the inflammatory signal. The mechanisms of cell death regulating T-cell numbers at sites of infection are incompletely characterized. T-cell death in cultures of peripheral blood mononuclear cells (PBMC) showed 'classic' features of apoptosis following exposure to pneumococci. Conversely, purified CD3(+) T-cells cultured with pneumococci demonstrated necrosis with membrane permeabilization. The death of purified CD3(+) T-cells was not inhibited by necrostatin, but required the bacterial toxin pneumolysin. Apoptosis of CD3(+) T-cells in PBMC cultures required 'classical' CD14(+) monocytes, which enhanced T-cell activation. CD3(+) T-cell death was enhanced in HIV-seropositive individuals. Monocyte-mediated CD3(+) T-cell apoptotic death was Fas-dependent both in vitro and in vivo. In the early stages of the T-cell dependent host response to pneumococci reduced Fas ligand mediated T-cell apoptosis was associated with decreased bacterial clearance in the lung and increased bacteremia. In summary monocytes converted pathogen-associated necrosis into Fas-dependent apoptosis and regulated levels of activated T-cells at sites of acute bacterial infection. These changes were associated with enhanced bacterial clearance in the lung and reduced levels of invasive pneumococcal disease

    Novel Anti-bacterial Activities of ÎČ-defensin 1 in Human Platelets: Suppression of Pathogen Growth and Signaling of Neutrophil Extracellular Trap Formation

    Get PDF
    Human ÎČ-defensins (hBD) are antimicrobial peptides that curb microbial activity. Although hBD's are primarily expressed by epithelial cells, we show that human platelets express hBD-1 that has both predicted and novel antibacterial activities. We observed that activated platelets surround Staphylococcus aureus (S. aureus), forcing the pathogens into clusters that have a reduced growth rate compared to S. aureus alone. Given the microbicidal activity of ÎČ-defensins, we determined whether hBD family members were present in platelets and found mRNA and protein for hBD-1. We also established that hBD-1 protein resided in extragranular cytoplasmic compartments of platelets. Consistent with this localization pattern, agonists that elicit granular secretion by platelets did not readily induce hBD-1 release. Nevertheless, platelets released hBD-1 when they were stimulated by α-toxin, a S. aureus product that permeabilizes target cells. Platelet-derived hBD-1 significantly impaired the growth of clinical strains of S. aureus. hBD-1 also induced robust neutrophil extracellular trap (NET) formation by target polymorphonuclear leukocytes (PMNs), which is a novel antimicrobial function of ÎČ-defensins that was not previously identified. Taken together, these data demonstrate that hBD-1 is a previously-unrecognized component of platelets that displays classic antimicrobial activity and, in addition, signals PMNs to extrude DNA lattices that capture and kill bacteria

    Importance of the Global Regulators Agr and SaeRS in the Pathogenesis of CA-MRSA USA300 Infection

    Get PDF
    CA-MRSA infection, driven by the emergence of the USA300 genetic background, has become epidemic in the United States. USA300 isolates are hypervirulent, compared with other CA- and HA-MRSA strains, in experimental models of necrotizing pneumonia and skin infection. Interestingly, USA300 isolates also have increased expression of core genomic global regulatory and virulence factor genes, including agr and saeRS. To test the hypothesis that agr and saeRS promote the observed hypervirulent phenotype of USA300, isogenic deletion mutants of each were constructed in USA300. The effects of gene deletion on expression and protein abundance of selected downstream virulence genes were assessed by semiquantitative real-time reverse-transcriptase PCR (qRT-PCR) and western blot, respectively. The effects of gene deletion were also assessed in mouse models of necrotizing pneumonia and skin infection. Deletion of saeRS, and, to a lesser extent, agr, resulted in attenuated expression of the genes encoding α-hemolysin (hla) and the Panton-Valentine leukocidin (lukSF-PV). Despite the differences in hla transcription, the toxin was undetectable in culture supernatants of either of the deletion mutants. Deletion of agr, but not saeRS, markedly increased the expression of the gene encoding protein A (spa), which correlated with increased protein abundance. Each deletion mutant demonstrated significant attenuation of virulence, compared with wild-type USA300, in mouse models of necrotizing pneumonia and skin infection. We conclude that agr and saeRS each independently contribute to the remarkable virulence of USA300, likely by means of their effects on expression of secreted toxins

    Dispersal of Group A Streptococcal Biofilms by the Cysteine Protease SpeB Leads to Increased Disease Severity in a Murine Model

    Get PDF
    Group A Streptococcus (GAS) is a Gram-positive human pathogen best known for causing pharyngeal and mild skin infections. However, in the 1980's there was an increase in severe GAS infections including cellulitis and deeper tissue infections like necrotizing fasciitis. Particularly striking about this elevation in the incidence of severe disease was that those most often affected were previously healthy individuals. Several groups have shown that changes in gene content or regulation, as with proteases, may contribute to severe disease; yet strains harboring these proteases continue to cause mild disease as well. We and others have shown that group A streptococci (MGAS5005) reside within biofilms both in vitro and in vivo. That is to say that the organism colonizes a host surface and forms a 3-dimensional community encased in a protective matrix of extracellular protein, DNA and polysaccharide(s). However, the mechanism of assembly or dispersal of these structures is unclear, as is the relationship of these structures to disease outcome. Recently we reported that allelic replacement of the streptococcal regulator srv resulted in constitutive production of the streptococcal cysteine protease SpeB. We further showed that the constitutive production of SpeB significantly decreased MGAS5005Δsrv biofilm formation in vitro. Here we show that mice infected with MGAS5005Δsrv had significantly larger lesion development than wild-type infected animals. Histopathology, Gram-staining and immunofluorescence link the increased lesion development with lack of disease containment, lack of biofilm formation, and readily detectable levels of SpeB in the tissue. Treatment of MGAS5005Δsrv infected lesions with a chemical inhibitor of SpeB significantly reduced lesion formation and disease spread to wild-type levels. Furthermore, inactivation of speB in the MGAS5005Δsrv background reduced lesion formation to wild-type levels. Taken together, these data suggest a mechanism by which GAS disease may transition from mild to severe through the Srv mediated dispersal of GAS biofilms

    Riociguat treatment in patients with chronic thromboembolic pulmonary hypertension: Final safety data from the EXPERT registry

    Get PDF
    Objective: The soluble guanylate cyclase stimulator riociguat is approved for the treatment of adult patients with pulmonary arterial hypertension (PAH) and inoperable or persistent/recurrent chronic thromboembolic pulmonary hypertension (CTEPH) following Phase

    In Vitro Serial Passage of Staphylococcus aureus: Changes in Physiology, Virulence Factor Production, and agr Nucleotide Sequence

    Get PDF
    Recently, we observed that Staphylococcus aureus strains newly isolated from patients had twofold-higher aconitase activity than a strain passaged extensively in vitro, leading us to hypothesize that aconitase specific activity decreases over time during in vitro passage. To test this hypothesis, a strain recovered from a patient with toxic shock syndrome was serially passaged for 6 weeks, and the aconitase activity was measured. Aconitase specific activity decreased 38% (P < 0.001) by the sixth week in culture. During serial passage, S. aureus existed as a heterogeneous population with two colony types that had pronounced (wild type) or negligible zones of beta-hemolytic activity. The cell density-sensing accessory gene regulatory (agr) system regulates beta-hemolytic activity. Surprisingly, the percentage of colonies with a wild-type beta-hemolytic phenotype correlated strongly with aconitase specific activity (ρ = 0.96), suggesting a common cause of the decreased aconitase specific activity and the variation in percentage of beta-hemolytic colonies. The loss of the beta-hemolytic phenotype also coincided with the occurrence of mutations in the agrC coding region or the intergenic region between agrC and agrA in the derivative strains. Our results demonstrate that in vitro growth is sufficient to result in mutations within the agr operon. Additionally, our results demonstrate that S. aureus undergoes significant phenotypic and genotypic changes during serial passage and suggest that vigilance should be used when extrapolating data obtained from the study of high-passage strains

    Multiplex PCR for Identification of Two Capsular Types in Epidemic KPC-Producing Klebsiella pneumoniae Sequence Type 258 Strains

    No full text
    We developed a multiplex PCR assay capable of identifying two capsular polysaccharide synthesis sequence types (sequence type 258 [ST258] cps-1 and cps-2) in epidemic Klebsiella pneumoniae ST258 strains. The assay performed with excellent sensitivity (100%) and specificity (100%) for identifying cps types in 60 ST258 K. pneumoniae sequenced isolates. The screening of 419 ST258 clonal isolates revealed a significant association between cps type and K. pneumoniae carbapenemase (KPC) variant: cps-1 is largely associated with KPC-2, while cps-2 is primarily associated with KPC-3

    Proteomic Profiling of Extracellular Vesicles Separated from Plasma of Former National Football League Players at Risk for Chronic Traumatic Encephalopathy

    No full text
    Chronic Traumatic Encephalopathy (CTE) is a tauopathy that affects individuals with a history of exposure to repetitive head impacts, including National Football League (NFL) players. Extracellular vesicles (EVs) are known to carry tau in Alzheimer’s disease and other tauopathies. We examined protein profiles of EVs separated from the plasma of former NFL players at risk for CTE. EVs were separated from the plasma from former NFL players and age-matched controls using size-exclusion chromatography. Label-free quantitative proteomic analysis identified 675 proteins in plasma EVs, and 17 proteins were significantly differentially expressed between former NFL players and controls. Total tau (t-tau) and tau phosphorylated at threonie181 (p-tau181) in plasma-derived EVs were measured by ultrasensitive immunoassay. Level of t-tau and p-tau181 in EVs were significantly different, and the area under the receiver operating characteristic curve (AUC) of t-tau and p-tau181 showed 0.736 and 0.715, respectively. Machine learning analysis indicated that a combination of collagen type VI alpha 3 and 1 chain (COL6A3 and COL6A1) and reelin (RELN) can distinguish former NFL players from controls with 85% accuracy (AUC = 0.85). Based on the plasma EV proteomics, these data provide protein profiling of plasma EVs for CTE, and indicate combination of COL6A3, RELN and COL6A1 in plasma EVs may serve as the potential diagnostic biomarkers for CTE
    corecore