18 research outputs found

    Mechanical thresholds for initiation and persistence of pain following nerve root injury: mechanical and chemical contributions at injury

    Get PDF
    There is much evidence supporting the hypothesis that magnitude of nerve root mechanical injury affects the nature of the physiological responses which can contribute to pain in lumbar radiculopathy. Specifically, injury magnitude has been shown to modulate behavioral hypersensitivity responses in animal models of radiculopathy. However, no study has determined the mechanical deformation thresholds for initiation and maintenance of the behavioral sensitivity in these models. Therefore, it was the purpose of this study to quantify the effects of mechanical and chemical contributions at injury on behavioral outcomes and to determine mechanical thresholds for pain onset and persistence. Male Holtzman rats received either a silk or chromic gut ligation of the L5 nerve roots, a sham exposure of the nerve roots, or a chromic exposure in which no mechanical deformation was applied but chromic gut material was placed on the roots. Using image analysis, nerve root radial strains were estimated at the time of injury. Behavioral hypersensitivity was assessed by measuring mechanical allodynia continuously throughout the study. Chromic gut ligations produced allodynia responses for nerve root strains at two-thirds of the magnitudes of those strains which produced the corresponding behaviors for silk ligation. Thresholds for nerve root compression producing the onset (8.4%) and persistence of pain (17.4-22.2%) were determined for silk ligation in this lumbar radiculopathy model. Such mechanical thresholds for behavioral sensitivity in a painful radiculopathy model begin to provide biomechanical data which may have utility in broader experimental and computational models for relating injury biomechanics and physiologic responses of pain

    Mitogen Activated Protein Kinase Phosphatase-1 Prevents the Development of Tactile Sensitivity In a Rodent Model of Neuropathic Pain

    Get PDF
    Neuropathic pain due to nerve injury is one of the most difficult types of pain to treat. Following peripheral nerve injury, neuronal and glial plastic changes contribute to central sensitization and perpetuation of mechanical hypersensitivity in rodents. The mitogen activated protein kinase (MAPK) family is pivotal in this spinal cord plasticity. MAPK phosphatases (MKPs) limit inflammatory processes by dephosphorylating MAPKs. For example, MKP-1 preferentially dephosphorylates p-p38. Since spinal p-p38 is pivotal for the development of chronic hypersensitivity in rodent models of pain, and p-p38 inhibitors have shown clinical potential in acute and chronic pain patients, we hypothesize that induction of spinal MKP-1 will prevent the development of peripheral nerve-injury-induced hypersensitivity and p-p38 overexpression. We cloned rat spinal cord MKP-1 and optimize MKP-1 cDNA in vitro using transfections to BV-2 cells. We observed that in vitro overexpression of MKP-1 blocked lipopolysaccharide-induced phosphorylation of p38 (and other MAPKs) as well as release of pro-algesic effectors (i.e., cytokines, chemokines, nitric oxide). Using this cDNA MKP-1 and a non-viral, in vivo nanoparticle transfection approach, we found that spinal cord overexpression of MKP-1 prevented development of peripheral nerve-injury-induced tactile hypersensitivity and reduced pro-inflammatory cytokines and chemokines and the phosphorylated form of p38

    Evidence for a Role of Endocannabinoids, Astrocytes and p38 Phosphorylation in the Resolution of Postoperative Pain

    Get PDF
    An alarming portion of patients develop persistent or chronic pain following surgical procedures, but the mechanisms underlying the transition from acute to chronic pain states are not fully understood. In general, endocannabinoids (ECBs) inhibit nociceptive processing by stimulating cannabinoid receptors type 1 (CB(1)) and type 2 (CB(2)). We have previously shown that intrathecal administration of a CB(2) receptor agonist reverses both surgical incision-induced behavioral hypersensitivity and associated over-expression of spinal glial markers. We therefore hypothesized that endocannabinoid signaling promotes the resolution of acute postoperative pain by modulating pro-inflammatory signaling in spinal cord glial cells.To test this hypothesis, rats receiving paw incision surgery were used as a model of acute postoperative pain that spontaneously resolves. We first characterized the concentration of ECBs and localization of CB(1) and CB(2) receptors in the spinal cord following paw incision. We then administered concomitant CB(1) and CB(2) receptor antagonists/inverse agonists (AM281 and AM630, 1 mg x kg(-1) each, i.p.) during the acute phase of paw incision-induced mechanical allodynia and evaluated the expression of glial cell markers and phosphorylated p38 (a MAPK associated with inflammation) in the lumbar dorsal horn. Dual blockade of CB(1) and CB(2) receptor signaling prevented the resolution of postoperative allodynia and resulted in persistent over-expression of spinal Glial Fibrillary Acidic Protein (GFAP, an astrocytic marker) and phospho-p38 in astrocytes. We provide evidence for the functional significance of these astrocytic changes by demonstrating that intrathecal administration of propentofylline (50 microg, i.t.) attenuated both persistent behavioral hypersensitivity and over-expression of GFAP and phospho-p38 in antagonist-treated animals.Our results demonstrate that endocannabinoid signaling via CB(1) and CB(2) receptors is necessary for the resolution of paw incision-induced behavioral hypersensitivity and for the limitation of pro-inflammatory signaling in astrocytes following surgical insult. Our findings suggest that therapeutic strategies designed to enhance endocannabinoid signaling may prevent patients from developing persistent or chronic pain states following surgery

    Cannabinoid receptor type 2 activation induces a microglial anti-inflammatory phenotype and reduces migration via MKP induction and ERK dephosphorylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cannabinoid receptor type 2 (CBR2) inhibits microglial reactivity through a molecular mechanism yet to be elucidated. We hypothesized that CBR2 activation induces an anti-inflammatory phenotype in microglia by inhibiting extracellular signal-regulated kinase (ERK) pathway, via mitogen-activated protein kinase-phosphatase (MKP) induction. MKPs regulate mitogen activated protein kinases, but their role in the modulation of microglial phenotype is not fully understood.</p> <p>Results</p> <p>JWH015 (a CBR2 agonist) increased MKP-1 and MKP-3 expression, which in turn reduced p-ERK1/2 in LPS-stimulated primary microglia. These effects resulted in a significant reduction of tumor necrosis factor-α (TNF) expression and microglial migration. We confirmed the causative link of these findings by using MKP inhibitors. We found that the selective inhibition of MKP-1 by Ro-31-8220 and PSI2106, did not affect p-ERK expression in LPS+JWH015-treated microglia. However, the inhibition of both MKP-1 and MKP-3 by triptolide induced an increase in p-ERK expression and in microglial migration using LPS+JWH015-treated microglia.</p> <p>Conclusion</p> <p>Our results uncover a cellular microglial pathway triggered by CBR2 activation. These data suggest that the reduction of pro-inflammatory factors and microglial migration via MKP-3 induction is part of the mechanism of action of CBR2 agonists. These findings may have clinical implications for further drug development.</p

    Preservice Elementary Teachers Increase Descriptive Science Vocabulary by Making Descriptive Adjective Object Boxes

    Get PDF
    Descriptive vocabulary is needed for communication and mental processing of science observations. Elementary preservice teachers in a science methods class at a mid-sized public college in central New York State increased their descriptive vocabularies through a course assignment of making a descriptive adjective object box. This teaching material consists of a set of theme-related objects with corresponding cards housed in a box. The front of each card lists four descriptive adjectives that describe physical observations of one of the objects, with an image of the object on the reverse for self-checking. The student reads these descriptive words and attempts to locate the one object to which they all refer. Preservice teachers (N = 67; 8M, 59F; 3H, 2B, 1A, 61W) took identical pretests/posttests in which they wrote descriptive adjectives for four objects. During the intervention, they explored example boxes with activities and worked in pairs to create their own sets of materials. Participants increased words generated from 17.8 to 25.7 for the four objects. The grade level of words produced also increased from 2.9 to 3.8. Both increases were statistically significant with a very large effect size (1.84) for words generated and a medium effect size (0.35) for increase in grade level of vocabulary

    Introduction

    No full text
    corecore