72 research outputs found

    Utilization of Multiyear Plant Breeding Data to Better Predict Genotype Performance

    Get PDF
    Despite the availability of multiyear, multicycle, and multiphase data in plant breeding programs for annual crops, selection is often based on single-year, single-cycle, and single-phase data. As genotypes in the same fields are usually grown under the same management practice, data from these fields can and should be analyzed together. In Monsanto’s North American maize (Zea mays L.) breeding program, this approach enables a spatial model to be fitted in each field, providing an estimate of spatial trend and a better estimate of residual variance in each field. Multiyear, multicycle analysis showed that the estimates of genotype × year variance (VGY) and genotype × year × location variance (VGYL) were still the largest components of the estimated phenotypic variance. Analysis of any single-year subset of the data inflated the estimate of genotypic variance (VG) by the size of the estimate of VGY, resulting in potential bias in the estimates of genotype performance. These results demonstrate the advantage of a combined analysis of data across years and cycles to make selection decisions for genotype advancement

    Theoretical Criteria for Scattering Dark States in Nanostructured Particles

    Get PDF
    Nanostructures with multiple resonances can exhibit a suppressed or even completely eliminated scattering of light, called a scattering dark state. We describe this phenomenon with a general treatment of light scattering from a multiresonant nanostructure that is spherical or nonspherical but subwavelength in size. With multiple resonances in the same channel (i.e., same angular momentum and polarization), coherent interference always leads to scattering dark states in the low-absorption limit, regardless of the system details. The coupling between resonances is inevitable and can be interpreted as arising from far-field or near-field. This is a realization of coupled-resonator-induced transparency in the context of light scattering, which is related to but different from Fano resonances. Explicit examples are given to illustrate these concepts.Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (Contract W911NF-13-D-0001)National Science Foundation (U.S.). Materials Research Science and Engineering Centers (Program) (Grant DMR-0819762

    Speed breeding is a powerful tool to accelerate crop research and breeding

    Get PDF
    The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand1. This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement
    corecore