7 research outputs found

    Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass

    Get PDF
    Citation: Zhang, X., Sallam, A., Gao, L., Kantarski, T., Poland, J., DeHaan, L. R., . . . Anderson, J. A. (2016). Establishment and optimization of genomic selection to accelerate the domestication and improvement of intermediate wheatgrass. Plant Genome, 9(1). doi:10.3835/plantgenome2015.07.0059Intermediate wheatgrass (IWG) is a perennial species and has edible and nutritious grain and desirable agronomic traits, including large seed size, high grain yield, and biomass. It also has the potential to provide ecosystem services and an economic return to farmers. However, because of its allohexaploidy and self-incompatibility, developing molecular markers for genetic analysis and molecular breeding has been challenging. In the present study, using genotyping-by-sequencing (GBS) technology, 3436 genomewide markers discovered in a biparental population with 178 genets, were mapped to 21 linkage groups (LG) corresponding to 21 chromosomes of IWG. Genomic prediction models were developed using 3883 markers discovered in a breeding population containing 1126 representative genets from 58 half-sib families. High predictive ability was observed for seven agronomic traits using cross-validation, ranging from 0.46 for biomass to 0.67 for seed weight. Optimization results indicated that 8 to 10 genets from each half-sib family can form a good training population to predict the breeding value of their siblings, and 1600 genomewide markers are adequate to capture the genetic variation in the current breeding population for genomic selection. Thus, with the advances in sequencing-based marker technologies, it was practical to perform molecular genetic analysis and molecular breeding on a new and challenging species like IWG, and genomic selection could increase the efficiency of recurrent selection and accelerate the domestication and improvement of IWG.A. © Crop Science Society of America

    Uncovering the Genetic Architecture of Seed Weight and Size in Intermediate Wheatgrass through Linkage and Association Mapping

    Get PDF
    Intermediate wheatgrass [IWG; Thinopyrum intermedium (Host) Barkworth & D.R. Dewey subsp. intermedium] is being developed as a new perennial grain crop that has a large allohexaploid genome similar to that of wheat (Triticum aestivum L.). Breeding for increased seed weight is one of the primary goals for improving grain yield of IWG. As a new crop, however, the genetic architecture of seed weight and size has not been characterized, and selective breeding of IWG may be more intricate than wheat because of its self-incompatible mating system and perennial growth habit. Here, seed weight, seed area size, seed width, and seed length were evaluated across multiple years, in a heterogeneous breeding population comprised of 1126 genets and two clonally replicated biparental populations comprised of 172 and 265 genets. Among 10,171 DNA markers discovered using genotyping-by-sequencing (GBS) in the breeding population, 4731 markers were present in a consensus genetic map previously constructed using seven full-sib populations. Thirty-three quantitative trait loci (QTL) associated with seed weight and size were identified using association mapping (AM), of which 23 were verified using linkage mapping in the biparental populations. About 37.6% of seed weight variation in the breeding population was explained by 15 QTL, 12 of which also contributed to either seed length or seed width. When performing either phenotypic selection or genomic selection for seed weight, we observed the frequency of favorable QTL alleles were increased to \u3e46%. Thus, by combining AM and genomic selection, we can effectively select the favorable QTL alleles for seed weight and size in IWG breeding populations
    corecore