41 research outputs found

    Palaeoenvironment reconstruction, volcanic evolution and geochronology of the Cerro Blanco subcomplex, Nevados de Chillan volcanic complex, Central Chile

    Get PDF
    Nevados de Chillán Volcanic Complex, central Chile, has been active for at least 640 ka—a period spanning a number of glacial and interglacial periods. Geologic mapping, radiometric dating and geochemical analysis have identified six new volcanic units and produced four new 40Ar/39Ar ages for Cerro Blanco, the northern subcomplex of Nevados de Chillán volcano. Compositions range from dacite to basaltic-andesite and a new geologic map is presented. Examination of lava fracture structures on both newly mapped lavas and those mapped during previous studies has enabled interpretations of former eruptive environments. Palaeoenvironment reconstructions, combined with 40Ar/39Ar ages and comparison with the marine oxygen isotope record, show that at least three phases of volcanic activity have occurred during the evolution of Cerro Blanco: (1) a constructive, pre-caldera collapse period; (2) a period of caldera formation and collapse; and (3) a constructive period of dome growth forming the modern day volcanic centre. This style of volcanic evolution, whereby large-scale caldera collapse is followed by growth of a new stratocone is common at Andean volcanoes

    Entablature: fracture types and mechanisms

    No full text
    Entablature is the term used to describe zones or tiers of irregular jointing in basaltic lava flows. It is thought to form when water from rivers dammed by the lava inundates the lava flow surface, and during lava-meltwater interaction in subglacial settings. A number of different fracture types are described in entablature outcrops from the Búrfell lava and older lava flows in Þjórsárdalur, southwest Iceland. These are: striae-bearing, column-bounding fractures and pseudopillow fracture systems that themselves consist of two different fracture types—master fractures with dimpled surface textures and subsidiary fractures with curved striae. The interaction of pseudopillow fracture systems and columnar jointing in the entablature produces the chevron fracture patterns that are commonly observed in entablature. Cube-jointing is a more densely fractured version of entablature, which likely forms when more coolant enters the hot lava. The entablature tiers display closely spaced striae and dendritic crystal shapes which indicate rapid cooling. Master fracture surfaces show a thin band with an evolved composition at the fracture surface; mineral textures in this band also show evidence of quenching of this material. This is interpreted as gas-driven filter pressing of late-stage residual melt that is drawn into an area of low pressure immediately preceding or during master fracture formation by ductile extensional fracture of hot, partially crystallised lava. This melt is then quenched by an influx of water and/or steam when the master fracture fully opens. Our findings suggest that master fractures are the main conduit for coolant entering the lava flow during entablature formation

    Columnar Joints

    No full text
    corecore