37 research outputs found

    Recovery of Manganese from Scrap Batteries of Mobile Phones

    No full text
    Present work is focused on the recovery of Mn as a value added product from the leach liquor of scrap lithium-ion batteries (LIBs) of mobile phones by the method of precipitation. The LIBs were crushed and beneficiated by wet scrubbing method to separate cathodic material, plastic and metallic parts. The cathodic material was found to contain 11.3% Mn, 10% Co, 2.4% Cu and 2.4% Li. The cathodic material was processed for leaching under the optimized condition developed by our group at CSIR-NML. Solvent extraction method was used to extract acid using organic extractant Tris(2-ethylhexyl)amine (TEHA) in order to reduce the consumption of alkali required during precipitation studies. The acid free leach liquor was subjected to purification for removal of Fe, Li, Cu and Co as precipitate at different pH. Systematic precipitation studies were carried in batch and continuous mode to recover Mn as Mn(OH)2 at pH *10 which was further roasted at 450 °C for 4 h to get pure Mn3O4

    The Influence of CO<sub>2</sub> Admixtures on the Product Composition in a Nitrogen-Methane Atmospheric Glow Discharge Used as a Prebiotic Atmosphere Mimic

    Get PDF
    This work extends our previous experimental studies of the chemistry of Titan’s atmosphere by atmospheric glow discharge. The Titan’s atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3)
    corecore